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UNIT-3 
 

 INSTRUCTION PIPELINING
 

As computer systems evolve, greater performance can be achieved by taking advantage of 

improvements in technology, such as faster circuitry, use of multiple registers rather than a single 

accumulator, and the use of a cache memory. Another organizational approach is instruction pipelining in 

which new inputs are accepted at one end before previously accepted inputs appear as outputs at the other 

end. 
 
 

 

 
 

 
Figure 3.1a depicts this approach. The pipeline has two independent stages. The first stage fetches an 

instruction and buffers it. When the second stage is free, the first stage passes it the buffered instruction. 

While the second stage is executing the instruction, the first stage takes advantage of any unused memory 

cycles to fetch and buffer the next instruction. This is called instruction prefetch or fetch overlap. 

This process will speed up instruction execution only if the fetch and execute stages were of equal 

duration, the instruction cycle time would be halved. However, if we look more closely at this pipeline 

(Figure 3.1b), we will see that this doubling of execution rate is unlikely for 3 reasons: 

1 The execution time will generally be longer than the fetch time. Thus, the fetch stage may have 

to wait for some time before it can empty its buffer. 

2 A conditional branch instruction makes the address of the next instruction to be fetched 

unknown. Thus, the fetch stage must wait until it receives the next instruction address from the execute 

stage. The execute stage may then have to wait while the next instruction is fetched. 

3 When a conditional branch instruction is passed on from the fetch to the execute stage, the fetch 

stage fetches the next instruction in memory after the branch instruction. Then, if the branch is not taken, 

no time is lost .If the branch is taken, the fetched instruction must be discarded and a new instruction 

fetched. 

To gain further speedup, the pipeline must have more stages. Let us consider the following 

decomposition of the instruction processing. 

1. Fetch instruction (FI): Read the next expected instruction into a buffer. 

2. Decode instruction (DI): Determine the opcode and the operand specifiers. 
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3. Calculate operands (CO): Calculate the effective address of each source operand. This may 

involve displacement, register indirect, indirect, or other forms of address calculation. 

4. Fetch operands (FO): Fetch each operand from memory. 

5. Execute instruction (EI): Perform the indicated operation and store the result, if any, in the 

specified destination operand location. 

6. Write operand (WO): Store the result in memory. 

Figure 3.2 shows that a six-stage pipeline can reduce the execution time for 9 instructions from 54 time 

units to 14 time units. 
 

3.2 Timing Diagram for Instruction Pipeline Operation 

 

FO and WO stages involve a memory access. If the six stages are not of equal duration, there will be 

some waiting involved at various pipeline stages. Another difficulty is the conditional branch instruction, 

which can invalidate several instruction fetches. A similar unpredictable event is an interrupt. 

3.3 Timing Diagram for Instruction Pipeline Operation with interrupts 

Figure 3.3 illustrates the effects of the conditional branch, using the same program as Figure 3.2. 

Assume that instruction 3 is a conditional branch to instruction 15. Until the instruction is executed, there 

is no way of knowing which instruction will come next. The pipeline, in this example, simply loads the 

next instruction in sequence (instruction 4) and proceeds. 
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In Figure 3.2, the branch is not taken. In Figure 3.3, the branch is taken. This is not determined until 

the end of time unit 7.At this point, the pipeline must be cleared of instructions that are not useful. During 

time unit 8, instruction 15 enters the pipeline. 

No instructions complete during time units 9 through 12; this is the performance penalty incurred 

because we could not anticipate the branch. Figure 3.4 indicates the logic needed for pipelining to account 

for branches and interrupts. 

3.4 Six-stage CPU Instruction Pipeline 

Figure 3.5 shows same sequence of events, with time progressing vertically down the figure, and 

each row showing the state of the pipeline at a given point in time. In Figure 3.5a (which corresponds to 

Figure 3.2), the pipeline is full at time 6, with 6 different instructions in various stages of execution, and 

remains full through time 9; we assume that instruction I9 is the last instruction to be executed. In Figure 

3.5b, (which corresponds to Figure 3.3), the pipeline is full at times 6 and 7. At time 7, instruction 3 is in 

the execute stage and executes a branch to instruction 15. At this point, instructions I4 through I7 are 

flushed from the pipeline, so that at time 8, only two instructions are in the pipeline, I3 and I15. 

For high-performance in pipelining designer must still consider about : 

1 At each stage of the pipeline, there is some overhead involved in moving data from buffer to 

buffer and in performing various preparation and delivery functions. This overhead can appreciably 

lengthen the total execution time of a single instruction. 

2 The amount of control logic required to handle memory and register dependencies and to 

optimize the use of the pipeline increases enormously with the number of stages. This can lead to a 

situation where the logic controlling the gating between stages is more complex than the stages being 

controlled. 

3 Latching delay: It takes time for pipeline buffers to operate and this adds to instruction cycle 

time. 
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3.5 An Alternative Pipeline depiction 

Pipelining Performance 

Measures of pipeline performance and relative speedup: 

The cycle time t of an instruction pipeline is the time needed to advance a set of instructions one stage 

through the pipeline; each column in Figures 3.2 and 3.3 represents one cycle time. 

The cycle time can be determined as 

t = max [ti] + d = tm + d 1 … i … k 

where 

ti = time delay of the circuitry in the ith stage of the pipeline 

tm = maximum stage delay (delay through stage which experiences the largest delay) 

k = number of stages in the instruction pipeline 

d = time delay of a latch, needed to advance signals and data from one stage to the next 

In general, the time delay d is equivalent to a clock pulse and tm W d. Now suppose that n instructions 

are processed, with no branches. Let Tk,n be the total time required for a pipeline with k stages to execute 

n instructions. Then 

Tk,n = [k + (n -1)]t 

A total of k cycles are required to complete the execution of the first instruction, and the remaining n 
2 

-1 instructions require n -1 cycles. 

completes at time cycle 14: 

14 = [6 + (9 -1)] 

This equation is easily verified from Figures 3.1. The ninth instruction 

Now consider a processor with equivalent functions but no pipeline, and assume that the instruction 

cycle time is kt. The speedup factor for the instruction pipeline compared to execution without the 

pipeline is defined as 
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 Pipeline Hazards

A pipeline hazard occurs when the pipeline, or some portion of the pipeline, must stall because 

conditions do not permit continued execution. Such a pipeline stall is also referred to as a pipeline bubble. 

There are three types of hazards: resource, data, and control. 

RESOURCE HAZARDS A resource hazard occurs when two (or more) instructions that are already in 

the pipeline need the same resource. The result is that the instructions must be executed in serial rather 

than parallel for a portion of the pipeline. A resource hazard is sometime referred to as a structural 

hazard. 

Let us consider a simple example of a resource hazard.Assume a simplified five-stage pipeline, in 

which each stage takes one clock cycle. In Figure 3.6a which a new instruction enters the pipeline each 

clock cycle. Now assume that main memory has a single port and that all instruction fetches and data 

reads and writes must be performed one at a time. In this case, an operand read to or write from memory 

cannot be performed in parallel with an instruction fetch. This is illustrated in Figure 3.6b, which assumes 

that the source operand for instruction I1 is in memory, rather than a register. Therefore, the fetch in- 

struction stage of the pipeline must idle for one cycle before beginning the instruction fetch for instruction 

I3. The figure assumes that all other operands are in registers. 

 

 

 

3.6 Example of Resource Hazard 
 

DATA HAZARDS A data hazard occurs when two instructions in a program are to be executed in 

sequence and both access a particular memory or register operand. If the two instructions are executed in 

strict sequence, no problem occurs but if the instructions are executed in a pipeline, then the operand 

value is to be updated in such a way as to produce a different result than would occur only with strict 

sequential execution of instructions. The program produces an incorrect result because of the use of 

pipelining. 

As an example, consider the following x86 machine instruction sequence: 

ADD EAX, EBX /* EAX = EAX + EBX 

SUB ECX, EAX /* ECX = ECX - EAX 

The first instruction adds the contents of the 32-bit registers EAX and EBX and stores the result in 
EAX. The second instruction subtracts the contents of EAX from ECX and stores the result in ECX. 
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Figure 3.7 shows the pipeline behaviour. The ADD instruction does not update register EAX until 

the end of stage 5, which occurs at clock cycle 5. But the SUB instruction needs that value at the 

beginning of its stage 2, which occurs at clock cycle 4. To maintain correct operation, the pipeline must 

stall for two clocks cycles. Thus, in the absence of special hardware and specific avoidance algorithms, 

such a data hazard results in inefficient pipeline usage. There are three types of data hazards; 

3.7 Example of Resource Hazard 

• Read after write (RAW), or true dependency:.A hazard occurs if the read takes place before the 

write operation is complete. 

• Write after read (RAW), or antidependency: A hazard occurs if the write operation completes 

before the read operation takes place. 

• Write after write (RAW), or output dependency: Two instructions both write to the same 

location. A hazard occurs if the write operations take place in the reverse order of the intended sequence. 

The example of Figure 3.7 is a RAW hazard. 
 

CONTROL HAZARDS A control hazard, also known as a branch hazard, occurs when the pipeline 

makes the wrong decision on a branch prediction and therefore brings instructions into the pipeline that 

must subsequently be discarded. 
 

 Dealing with Branches
 

Until the instruction is actually executed, it is impossible to determine whether the branch will be taken or 

not. A variety of approaches have been taken for dealing with conditional branches: 

• Multiple streams 

• Prefetch branch target 

• Loop buffer 

• Branch prediction 

• Delayed branch 

 

MULTIPLE STREAMS A simple pipeline suffers a penalty for a branch instruction because it must 

choose one of two instructions to fetch next and may make the wrong choice. 

A brute-force approach is to replicate the initial portions of the pipeline and allow the pipeline to 

fetch both instructions, making use of two streams. There are two problems with this approach: 

• With multiple pipelines there are contention delays for access to the registers and to memory. 

• Additional branch instructions may enter the pipeline (either stream) before the original branch 

decision is resolved. Each such instruction needs an additional stream. 

Examples of machines with two or more pipeline streams are the IBM 370/168 and the IBM 3033. 

PREFETCH BRANCH TARGET When a conditional branch is recognized, the target of the branch is 

prefetched, in addition to the instruction following the branch. This target is then saved until the branch 

instruction is executed. If the branch is taken, the target has already been prefetched. 
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Example- The IBM 360/91 uses this approach. 

LOOP BUFFER A loop buffer is a small, very-high-speed memory maintained by the instruction fetch 

stage of the pipeline and containing the n most recently fetched instructions, in sequence. If a branch is to 

be taken, the hardware first checks whether the branch target is within the buffer. If so, the next 

instruction is fetched from the buffer. 

The loop buffer has three benefits: 

1. With the use of prefetching, the loop buffer will contain some instruction sequentially ahead of the 

current instruction fetch address. 

2. If a branch occurs to a target just a few locations ahead of the address of the branch instruction,the 

target will already be in the buffer. 

3.  This strategy is particularly well suited to dealing with loops, or iterations; hence the name loop 

buffer. If the loop buffer is large enough to contain all the instructions in a loop, then those 

instructions need to be fetched from memory only once, for the first iteration. For subsequent 

iterations, all the needed instructions are already in the buffer. 

Figure 3.8 gives an example of a loop buffer 

 

3.8 Loop Buffer 

BRANCH PREDICTION Various techniques can be used to predict whether a branch will be taken. 

Among the more common are the following: 

• Predict never taken 

• Predict always taken 

• Predict by opcode 

• Taken/not taken switch 

• Branch history table 

The first three approaches are static: they do not depend on the execution history up to the time of 

the conditional branch instruction. The latter two approaches are dynamic: They depend on the execution 

history. 

The first two approaches are the simplest. These either always assume that the branch will not be 

taken or continue to fetch instructions in sequence, or they always assume that the branch will be taken 

and always fetch from the branch target. The predict-never-taken approach is the most popular of all the 

branch prediction methods. 

DELAYED BRANCH It is possible to improve pipeline performance by automatically rearranging 

instructions within a program, so that branch instructions occur later than actually desired. 
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 8086 Processor Family
The x86 organization has evolved dramatically over the years. 

Register Organization 

The register organization includes the following types of registers (Table 3.1): 

 

Table 3.1: X86 Processor Registers 

 

• General: There are eight 32-bit general-purpose registers. These may be used for all types of x86 

instructions; and some of these registers also serve special purposes. For example, string instructions use 

the contents of the ECX, ESI, and EDI registers as operands without having to reference these registers 

explicitly in the instruction. 

• Segment: The six 16-bit segment registers contain segment selectors, which index into segment 

tables, as discussed in Chapter 8. The code segment (CS) register references the segment containing the 

instruction being executed. The stack segment (SS) register references the segment containing a user- 

visible stack.The remaining segment registers (DS,ES,FS,GS) enable the user to reference up to four 

separate data segments at a time. 

• Flags: The 32-bit EFLAGS register contains condition codes and various mode bits. In 64-bit 

mode, this register is extended to 64 bits and referred to as RFLAGS. In the current architecture 

definition, the upper 32 bits of RFLAGS are unused. 

• Instruction pointer: Contains the address of the current instruction. There are also registers 

specifically devoted to the floating-point unit: 

• Numeric: Each register holds an extended-precision 80-bit floating-point number. There are eight 

registers that function as a stack, with push and pop operations available in the instruction set. 

• Control: The 16-bit control register contains bits that control the operation of the floating-point 

unit, including the type of rounding control; single, double, or extended precision; and bits to enable or 

disable various exception conditions. 
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• Status: The 16-bit status register contains bits that reflect the current state of the floating-point 

unit, including a 3-bit pointer to the top of the stack; condition codes reporting the outcome of the last 

operation; and exception flags. 

• Tag word: This 16-bit register contains a 2-bit tag for each floating-point numeric register, which 

indicates the nature of the contents of the corresponding register. The four possible values are valid, zero, 

special (NaN, infinity, denormalized),and empty. 

EFLAGS REGISTER The EFLAGS register (Figure 3.9) indicates the condition of the processor and 

helps to control its operation. It includes the six condition codes (carry, parity, auxiliary, zero, sign, 

overflow), which report the results of an integer operation. In addition, there are bits in the register that 

may be referred to as control bits: 

 

Figure 3.9 PentiumII EFLAGS Register 

• Trap flag (TF): When set, causes an interrupt after the execution of each instruction. This is used 

for debugging. 

• Interrupt enable flag (IF): When set, the processor will recognize external interrupts. 

• Direction flag (DF): Determines whether string processing instructions increment or decrement 

the 16-bit half-registers SI and DI (for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit 

operations). 

• I/O privilege flag (IOPL): When set, causes the processor to generate an exception on all 

accesses to I/O devices during protected-mode operation. 

• Resume flag (RF): Allows the programmer to disable debug exceptions so that the instruction can 

be restarted after a debug exception without immediately causing another debug exception. 

• Alignment check (AC): Activates if a word or doubleword is addressed on a nonword or 

nondoubleword boundary. 

• Identification flag (ID): If this bit can be set and cleared, then this processor supports the 

processorID instruction. This instruction provides information about the vendor, family, and model. 

• Nested Task (NT) flag indicates that the current task is nested within another task in protected- 

mode operation. 

• Virtual Mode (VM) bit allows the programmer to enable or disable virtual 8086 mode, which 

determines whether the processor runs as an 8086 machine. 

• Virtual Interrupt Flag (VIF) and Virtual Interrupt Pending (VIP) flag are used in a multitasking 

environment 

CONTROL REGISTERS The x86 employs four control registers (register CR1 is unused) to control 

various aspects of processor operation . All of the registers except CR0 are either 32 bits or 64 bits 

long..The flags are are as follows: 

• Protection Enable (PE): Enable/disable protected mode of operation. 

• Monitor Coprocessor (MP): Only of interest when running programs from earlier machines on 

the x86; it relates to the presence of an arithmetic coprocessor. 
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• Emulation (EM): Set when the processor does not have a floating-point unit, and causes an 

interrupt when an attempt is made to execute floating-point instructions. 

• Task Switched (TS): Indicates that the processor has switched tasks. 

• Extension Type (ET): Not used on the Pentium and later machines; used to indicate support of 

math coprocessor instructions on earlier machines. 

• Numeric Error (NE): Enables the standard mechanism for reporting floating-point errors on 

external bus lines. 

• Write Protect (WP): When this bit is clear, read-only user-level pages can be written by a 

supervisor process. This feature is useful for supporting process creation in some operating systems. 

• Alignment Mask (AM): Enables/disables alignment checking. 

• Not Write Through (NW): Selects mode of operation of the data cache. When this bit is set, the 

data cache is inhibited from cache write-through operations. 

• Cache Disable (CD): Enables/disables the internal cache fill mechanism. 

• Paging (PG): Enables/disables paging. 

1. When paging is enabled, the CR2 and CR3 registers are valid. 

2. The CR2 register holds the 32-bit linear address of the last page accessed before a page fault inter- 

rupt. 

3. The leftmost 20 bits of CR3 hold the 20 most significant bits of the base address of the page 

directory; the remainder of the address contains zeros. The page-level cache disable (PCD) 

enables or disables the external cache, and the page-level writes transparent (PWT) bit controls 

write through in the external cache. 

4. Nine additional control bits are defined in CR4: 

• Virtual-8086 Mode Extension (VME): Enables virtual interrupt flag in virtual-8086 mode. 

• Protected-mode Virtual Interrupts (PVI): Enables virtual interrupt flag in protected mode. 

• Time Stamp Disable (TSD): Disables the read from time stamp counter (RDTSC) instruction, 

which is used for debugging purposes. 

• Debugging Extensions (DE): Enables I/O breakpoints; this allows the processor to interrupt on 

I/O reads and writes. 

• Page Size Extensions (PSE): Enables large page sizes (2 or 4-MByte pages) when set; restricts 

pages to 4 KBytes when clear. 

• Physical Address Extension (PAE): Enables address lines A35 through A32 whenever a special 

new addressing mode, controlled by the PSE, is enabled. 

• Machine Check Enable (MCE): Enables the machine check interrupt, which occurs when a data 

parity error occurs during a read bus cycle or when a bus cycle is not successfully complete 

• Page Global Enable (PGE): Enables the use of global pages. When PGE = 1 and a task switch is 

performed, all of the TLB entries are flushed with the exception of those marked global. 

• Performance Counter Enable(PCE): Enables the Execution of the RDPMC (read performance 

counter) instruction at any privilege level. 



UNIT-III 

Page 11 

 

 

MMX REGISTERS The MMX instructions make use of 3-bit register address fields, so that eight MMX 

registers are supported. (Figure 3.11). The existing floating-point registers are used to store MMX values. 

Specifically, the low-order 64 bits (mantissa) of each floating-point register are used to form the eight 

MMX registers. Some key characteristics of the MMX use of these registers are as follows: 

• Recall that the floating-point registers are treated as a stack for floating-point operations. For 

MMX operations, these same registers are accessed directly. 

• The first time that an MMX instruction is executed after any floating-point operations, the FP tag 

word is marked valid. This reflects the change from stack operation to direct register addressing. 

• The EMMS (Empty MMX State) instruction sets bits of the FP tag word to indicate that all 

registers are empty. It is important that the programmer insert this instruction at the end of an MMX code 

block so that subsequent floating-point operations function properly. 

• When a value is written to an MMX register, bits [79:64] of the corresponding FP register (sign 

and exponent bits) are set to all ones. This sets the value in the FP register to NaN (not a number) or 

infinity when viewed as a floating-point value. This ensures that an MMX data value will not look like a 

valid floating-point value. 
 

 

3.11 Mapping of MMX Registers to Floating Point Registers 

 
Interrupt Processing 

Interrupt processing within a processor is a facility provided to support the operating system. It allows an 

application program to be suspended, in order that a variety of interrupt conditions can be serviced and 

later resumed. 

INTERRUPTS AND EXCEPTIONS An interrupt is generated by a signal from hardware, and it may 

occur at random times during the execution of a program. An exception is generated from software, and it 

is provoked by the execution of an instruction. There are two sources of interrupts and two sources of 

exceptions: 

1. Interrupts 

• Maskable interrupts: Received on the processor’s INTR pin. The processor does not recognize a 

maskable interrupt unless the interrupt enable flag (IF) is set. 

• Nonmaskable interrupts: Received on the processor’s NMI pin. Recognition of such interrupts 

cannot be prevented. 
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2. Exceptions 

• Processor-detected exceptions: Results when the processor encounters an error while attempting 

to execute an instruction. 

• Programmed exceptions: These are instructions that generate an exception (e.g., INTO, INT3, 

INT, and BOUND). 

 

INTERRUPT VECTOR TABLE Interrupt processing on the x86 uses the interrupt vector table. Every 

type of interrupt is assigned a number, and this number is used to index into the interrupt vector table. 

This table contains 256 32-bit interrupt vectors, which is the address (segment and offset) of the interrupt 

service routine for that interrupt number. 

INTERRUPT HANDLING When an interrupt occurs and is recognized by the processor, a sequence of 

events takes place: 

1 If the transfer involves a change of privilege level, then the current stack segment register and the 

current extended stack pointer (ESP) register are pushed onto the stack. 

2 The current value of the EFLAGS register is pushed onto the stack. 

3 Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR interrupts and the trap 

or single-step feature. 

4 The current code segment (CS) pointer and the current instruction pointer (IP or EIP) are pushed 

onto the stack. 

5 If the interrupt is accompanied by an error code, then the error code is pushed onto the stack. 

6 The interrupt vector contents are fetched and loaded into the CS and IP or EIP registers. Execution 

continues from the interrupt service routine. 

 

 REDUCED INSTRUCTION SET COMPUTERS: Instruction Execution Characteristics, 

Large Register Files and RISC Architecture

 

 Instruction Execution Characteristics

The semantic gap is the difference between the operations provided in HLLs and those provided in 

computer architecture. . Designers responded with architectures intended to close this gap. Key features 

include large instruction sets, dozens of addressing modes, and various HLL statements implemented in 

hardware. Such complex instruction sets are intended to 

• Ease the task of the compiler writer. 

• Improve execution efficiency, because complex sequences of operations can be implemented in 

microcode. 

• Provide support for even more complex and sophisticated HLLs. 

The results of these studies inspired some researchers to look for a different approach: namely, to 

make the architecture that supports the HLL simpler, rather than more complex To understand the line of 

reasoning of the RISC advocates, we begin with a brief review of instruction execution characteristics. 

The aspects of computation of interest are as follows: 

• Operations performed: These determine the functions to be performed by the processor and its 

interaction with memory. 

• Operands used: The types of operands and the frequency of their use determine the memory 

organization for storing them and the addressing modes for accessing them. 

• Execution sequencing: This determines the control and pipeline organization. 

 
Implications 

A number of groups have looked at results such as those just reported and have concluded that the attempt 

to make the instruction set architecture close to HLLs is not the most effective design strategy. Rather, the 
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HLLs can best be supported by optimizing performance of the most time-consuming features of typical 

HLL programs. 

• Generalizing from the work of a number of researchers, three elements emerge that, by and large, 

characterize RISC architectures. 

• First, use a large number of registers or use a compiler to optimize register usage. This is intended 

to optimize operand referencing. The studies just discussed show that there are several references per 

HLL instruction and that there is a high proportion of move (assignment) statements. This suggests that 

performance can be improved by reducing memory references at the expense of more register references. 

• Second, careful attention needs to be paid to the design of instruction pipelines. Because of the 

high proportion of conditional branch and procedure call instructions, a straightforward instruction 

pipeline will be inefficient. This manifests itself as a high proportion of instructions that are prefetched 

but never executed. 

• Finally, a simplified (reduced) instruction set is indicated. This point is not as obvious as the 

others, but should become clearer in the ensuing discussion. 

 

 Use of Large Register Files:

The reason that register storage is indicated is that it is the fastest available storage device, faster 

than both main memory and cache. The register file will allow the most frequently accessed operands to 

be kept in registers and to minimize register-memory operations. 

Two basic approaches are possible, one based on software and the other on hardware. 

The software approach is to rely on the compiler to maximize register usage. The compiler will 

attempt to allocate registers to those variables that will be used the most in a given time period. This 

approach requires the use of sophisticated program-analysis algorithms. 

The hardware approach is simply to use more registers so that more variables can be held in registers 

for longer periods of time. Here we will discuss the hardware approach. 

 
Register Windows 

On the face of it, the use of a large set of registers should decrease the need to access memory. 

Because most operand references are to local scalars, the obvious approach is to store these in 

registers, and few registers reserved for global variables. The problem is that the definition of local 

changes with each procedure call and return, operations that occur frequently 

The solution is based on two other results reported. First, a typical procedure employs only a few 

passed parameters and local variables. Second, the depth of procedure activation fluctuates within a 

relatively narrow range. 

The concept is illustrated in Figure 3.12. At any time, only one window of registers is visible and is 

addressable as if it were the only set of registers (e.g., addresses 0 through N -1).The window is divided 

into three fixed-size areas. Parameter registers hold parameters passed down from the procedure that 

called the current procedure and hold results to be passed back up. Local registers are used for local 

variables, as assigned by the compiler. Temporary registers are used to exchange parameters and results 

with the next lower level (procedure called by current procedure).The temporary registers at one level are 

physically the same as the parameter registers at the next lower level. This overlap permits parameters to 

be passed without the actual movement of data. Keep in mind that, except for the overlap, the registers at 

two different levels are physically distinct. That is, the parameter and local registers at level J are disjoint 

from the local and temporary registers at level J + 1. 
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3.12 Overlapping Register windows 
 

 
 

3.13 Circular Buffer Organization of Overlapping Windows 

The circular organization is shown in Figure 3.13, which depicts a circular buffer of six windows. The 

buffer is filled to a depth of 4 (A called B; B called C; C called D) with procedure D active. The current- 

window pointer (CWP) points to the window of the currently active procedure. Register references by a 

machine instruction are offset by this pointer to determine the actual physical register. 

The saved-window pointer (SWP) identifies the window most recently saved in memory. If procedure 

D now calls procedure E, arguments for E are placed in D’s temporary registers (the overlap between w3 

and w4) and the CWP is advanced by one window. If procedure E then makes a call to procedure F, the 

call cannot be made with the current status of the buffer. This is because F’s window overlaps A’s 

window. If F begins to load its temporary registers, preparatory to a call, it will overwrite the parameter 

registers of A (A. in). 

Thus, when CWP is incremented (modulo 6) so that it becomes equal to SWP, an interrupt occurs, and 

A’s window is saved. Only the first two portions (A. in and A.loc) need be saved. Then, the SWP is 

incremented and the call to F proceeds. A similar interrupt can occur on returns. For example, subsequent 

to the activation of F, when B returns to A, CWP is decremented and becomes equal to SWP. This causes 

an interrupt that results in the restoration of A’s window. 

Global Variables 

The window scheme does not address the need to store global variables, those accessed by more than one 

procedure. Two options suggest themselves. 

First, variables declared as global in an HLL can be assigned memory locations by the compiler, and 
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all machine instructions that reference these variables will use memory-reference operands. 

An alternative is to incorporate a set of global registers in the processor. These registers would be 

fixed in number and available to all procedures..There is an increased hardware burden to accommodate 

the split in register addressing. In addition, the compiler must decide which global variables should be 

assigned to registers. 

Large Register File versus Cache 

The register file, organized into windows, acts as a small, fast buffer for holding a subset of all variables 

that are likely to be used the most heavily. From this point of view, the register file acts much like a cache 

memory, although a much faster memory. The question therefore arises as to whether it would be simpler 

and better to use a cache and a small traditional register file. 

Table 3.2 compares characteristics of the two approaches. 
 

Table 3.2 Characteristics of large register files and cache organization 

 

• The window-based register file holds all the local scalar variables (except in the rare case of 

window overflow) of the most recent N -1 procedure activations. The cache holds a selection of recently 

used scalar variables. The register file should save time, because all local scalar variables are retained. 

• The cache may make more efficient use of space, because it is reacting to the situation 

dynamically. 

A register file may make inefficient use of space, because not all procedures will need the full window 

space allotted to them. 

• The cache suffers from another sort of inefficiency: Data are read into the cache in blocks. 

Whereas the register file contains only those variables in use, the cache reads in a block of data, some or 

much of which will not be used. 

• The cache is capable of handling global as well as local variables. There are usually many global 

scalars, but only a few of them are heavily used. A cache will dynamically discover these variables and 

hold them. If the window-based register file is supplemented with global registers, it too can hold some 

global scalars. However, it is difficult for a compiler to determine which globals will be heavily used. 

• With the register file, the movement of data between registers and memory is determined by the 

procedure nesting depth.. Most cache memories are set associative with a small set size. 

• Figure 3.14 illustrates the difference. To reference a local scalar in a window-based register file, a 

“virtual”register number and a window number are used. These can pass through a relatively simple 

decoder to select one of the physical registers. To reference a memory location in cache, a full-width 

memory address must be generated. The complexity of this operation depends on the addressing mode. In 

a set associative cache, a portion of the address is used to read a number of words and tags equal to the set 

size. Another portion of the address is compared with the tags, and one of the words that were read is 

selected. It should be clear that even if the cache is as fast as the register file, the access time will be 

considerably longer. Thus, from the point of view of performance, the window-based register file is 

superior for local scalars. Further performance improvement could be achieved by the addition of a cache 

for instructions only. 
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3.14 Referencing a scalar 

 

 Reduced Instruction Set Computer: 

Why CISC

CISC has richer instruction sets, which include a larger number of instructions and more complex 

instructions. Two principal reasons have motivated this trend: a desire to simplify compilers and a desire 

to improve performance. 

The first of the reasons cited, compiler simplification, seems obvious. The task of the compiler  

writer is to generate a sequence of machine instructions for each HLL statement. If there are machine 

instructions that resemble HLL statements, this task is simplified. 

This reasoning has been disputed by the RISC researchers. They have found that complex machine 

instructions are often hard to exploit because the compiler must find those cases that exactly fit the con- 

struct. The task of optimizing the generated code to minimize code size, reduce instruction execution 

count, and enhance pipelining is much more difficult with a complex instruction set. 

The other major reason cited is the expectation that a CISC will yield smaller, faster programs. Let 

us examine both aspects of this assertion: that program will be smaller and that they will execute faster. 

There are two advantages to smaller programs. First, because the program takes up less memory, there is 

a savings in that resource. Second, in a paging environment, smaller programs occupy fewer pages, 

reducing page faults. 

The problem with this line of reasoning is that it is far from certain that a CISC program will be 

smaller than a corresponding RISC program. Thus it is far from clear that a trend to increasingly complex 

instruction sets is appropriate. This has led a number of groups to pursue the opposite path. 

Characteristics of Reduced Instruction Set Architectures 

Although a variety of different approaches to reduced instruction set architecture have been taken, certain 

characteristics are common to all of them: 

• One instruction per cycle 
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• Register-to-register operations 

• Simple addressing modes 

• Simple instruction formats 

 

One machine instruction per machine cycle.A machine cycle is defined to be the time it takes to 

fetch two operands from registers, perform an ALU operation, and store the result in a register. Thus, 

RISC machine instructions should be no more complicated than, and execute about as fast as, 

microinstructions on CISC machines.With simple, one-cycle instructions, there is little or no need for 

microcode; the machine instructions can be hardwired. Such instructions should execute faster than 

comparable machine instructions on other machines, because it is not necessary to access a microprogram 

control store during instruction execution. 

A second characteristic is that most operations should be register to register, with only simple 

LOAD and STORE operations accessing memory.This design feature simplifies the instruction set and 

therefore the control unit. For example, a RISC instruction set may include only one or two ADD 

instructions (e.g., integer add, add with carry); the VAX has 25 different ADD instructions. 

This emphasis on register-to-register operations is notable for RISC designs. Contemporary CISC 

machines provide such instructions but also include memoryto-memory and mixed register/memory 

operations. Figure 13.5a illustrates the approach taken, Figure 13.5b may be a fairer comparison. 
 
 

3.15 Two Comparisions of Register-to-Register and Register-to-Memory References 

A third characteristic is the use of simple addressing modes. Almost all RISC instructions use simple 

register addressing. Several additional modes, such as displacement and PC-relative, may be included. 

A final common characteristic is the use of simple instruction formats. Generally, only one or a 

few formats are used. Instruction length is fixed and aligned on word boundaries 

These characteristics can be assessed to determine the potential performance benefits of the RISC 

approach. 

First, more effective optimizing compilers can be developed 

A second point, already noted, is that most instructions generated by a compiler are relatively simple 

anyway. It would seem reasonable that a control unit built specifically for those instructions and using 

little or no microcode could execute them faster than a comparable CISC. 

A third point relates to the use of instruction pipelining. RISC researchers feel that the instruction 

pipelining technique can be applied much more effectively with a reduced instruction set. 

A final, and somewhat less significant, point is that RISC processors are more responsive to 

interrupts because interrupts are checked between rather elementary operations. 
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CISC versus RISC Characteristics 

After the initial enthusiasm for RISC machines, there has been a growing realization that (1) RISC 

designs may benefit from the inclusion of some CISC features and that (2) CISC designs may benefit 

from the inclusion of some RISC features. The result is that the more recent RISC designs, notably the 

PowerPC, are no longer “pure” RISC and the more recent CISC designs, notably the Pentium II and later 

Pentium models, do incorporate some RISC characteristics. 

Table 3.3 lists a number of processors and compares them across a number of characteristics. For 

purposes of this comparison, the following are considered typical of a classic RISC: 

1. A single instruction size. 

2. That size is typically 4 bytes. 

3. A small number of data addressing modes,typically less than five.This parameter is difficult to pin 

down. In the table, register and literal modes are not counted and different formats with different offset 

sizes are counted separately. 

4. No indirect addressing that requires you to make one memory access to get the address of another 

operand in memory. 

5. No operations that combine load/store with arithmetic (e.g., add from memory, add to memory). 

6. No more than one memory-addressed operand per instruction. 

7. Does not support arbitrary alignment of data for load/store operations. 

8. Maximum number of uses of the memory management unit (MMU) for a data address in an 

instruction. 

9. Number of bits for integer register specifier equal to five or more. This means that at least 32 integer 

registers can be explicitly referenced at a time. 

10. Number of bits for floating-point register specifier equal to four or more.This means that at least 16 

floating-point registers can be explicitly referenced at a time. 

Items 1 through 3 are an indication of instruction decode complexity. Items 4 through 8 suggest 

the ease or difficulty of pipelining, especially in the presence of virtual memory requirements. Items 9 

and 10 are related to the ability to take good advantage of compilers. 

In the table, the first eight processors are clearly RISC architectures, the next five are clearly 

CISC, and the last two are processors often thought of as RISC that in fact have many CISC 

characteristics. 
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Table 3.3: Characteristics if some Processors 


