Course Module for Biomedical and Image Processing (B.Tech 8th Sem ECE) Biomedical and Image Processing

Subject Code: ECE-109E

L T P: 310

Credits: 03

Syllabus

Unit I

Fundamentals of Signal Processing: Sampling and aliasing, Signal reconstruction, Signal conversion systems, Circular convolution Correlation- Autocorrelation – Cross correlation, FFT-decimation in time algorithm, Decimation in Frequency algorithm

Unit II

Digital Filter Design: Basics of filter, Design of IR filter-impulse invariant method – Bilinear Transformation Method Warping and pre-warping effect, Frequency transformation, Characteristics of FIR filter, FIR filter design using windowing techniques- Rectangular window – Hamming window – Hanning window

Unit III

Wavelet and Speech Processing: Introduction to wavelets, Time frequency representation, Discrete wavelet transform, pyramid algorithm, Comparison of Fourier transform and wavelet transform, Speech analysis – Cepstrum – Homomorphic filtering of speech signals, ECG signal characteristics – EEG analysis.

Unit IV:

Analysis of Bio-signals: Automatic analysis and classification of ECG, P-wave detection, QRS complex detection, Correlation analysis of ECG signals, Signal averaged ECG, Analysis of Heart Rate variability, Synchronized averaging of PCG envelopes, Analysis of PCG signal, Analysis of EMG signal

Unit V:

Introduction to Human vision and perception: Image enhancement, feature detection

TEXT BOOKS:

- R1. Digital Signal Processing, Principles Algorithms and Applications, Third edition; John G, Proakis and Dimitris G Manolakis (Prentice Hall)
- R2. Biomedical signal analysis-A Case-Study Approach, **Rangaraj M Rangayan** (Wiley-Interscience, John Wiley & Sons, Inc)
- R3. Biomedical Digital Signal Processing ,**Willis J. Tompkins** (Prentice Hall)
- R4. Introduction to Wavelets and Wavelet Transforms- A Primer, **C. Sidney Burrus, Ramesh A. Gopinath and Haitao Guo** (Prentice Hall)
- R5. Digital Image Processing, Second edition **Rafael C. Gonzalez, Richard E. Woods**, (Prentice Hall)

Download Link for Text Books:

https://drive.google.com/open?id=1hsqXSlxCr5DE5IIJsrOmX39bQbL0Wpx-

https://drive.google.com/open?id=190nyxVk1GKpdCfvM9nA-8WVMGuUpfgM6

https://drive.google.com/open?id=1syoD8auYAYHNGfiWYo-YHD1r7kNAZaV2

https://libgen.lc/ads.php?md5=3B50D6235FD5CC3723009397F5333F7E

https://libgen.lc/ads.php?md5=76CC619D8043977966C6D19C44B4D320

Course Module/Plan

Unit	Unit Name	Topics	Reference	NPTEL Videos Link
Ι	Fundamentals of Signal Processing	 Sampling of analog signals and Sampling -Theorem Reconstruction of analog signal from its samples DFT and circular Convolution Fast Fourier Transform (FFT)- Divide and Rule Approach Radix-2FFT Algorithms 	R1 (Chapter 1) R1 (Chapter 5) R1 (Chapter 6)	https://nptel.ac.in/courses/10 8/105/108105055/ Digital Signal Processing Prof. T.K. Basu IIT Kharagpur
II	Digital Filter Design	 General Consideration- Causality and its implications Design of liner phase FIR filters using windows IIR filter design by impulse invariance methods IIR filter design by the Bilinear transformation Frequency Transformations 	R1 (Chapter 8)	https://nptel.ac.in/courses/10 8/105/108105055/ Digital Signal Processing Prof. T.K. Basu IIT Kharagpur
		 Introduction to Wavelets: Wavelets and wavelet expansion systems The discrete time and continuous wavelet transform 	R4 (Chapter 1)	https://nptel.ac.in/courses/10 8/101/108101093/
III	Wavelets	 A Multiresolution formulation of wavelet systems : The scaling function The wavelet functions Examples of wavelet expansions 	R4 (Chapter 2)	Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis Prof. V.M. Gadre, IIT Bombay
		 Filters banks and discrete wavelet transform Analysis- From fine scale to coarse scale ;filtering and down sampling Synthesis- From coarse scale to fine scale ; filtering and up sampling Time frequency analysis 	R4 (Chapter 3)	
		Wavelet based signal processing and applications	R4 (Chapter 10)	
IV	Analysis of	 Introduction to Biomedical Signals The Nature and Examples of Biomedical Signals The electrocardiogram (ECG), The electroencephalogram (EEG), The phonocardiograrn (PCG) Basic electrocardiography: ECG lead systems :ECG signal 	R2 (Chapter 1) R3 (Chapter 1, Chapter 2)	https://nptel.ac.in/courses/10 8/105/108105101/ Biomedical Signal Processing Prof. Sudipta Mukhopadhyay
	Bio-medical signals	 characteristics Objectives of Biomedical Signal Analysis Difficulties in Biomedical Signal Analysis Filtering for Removal of Artifacts: 	R2 (Chapter 3)	IIT Kharagpur
		Random noise, structured noise, and physiological interference		

		• High-frequency noise in the ECG; Motion artifact in the ECG Power- line interference in ECG signals; Maternal interference in fetal ECG		
		 Potential solutions to the problem Time-domain Filters Frequency-domain Filters Optimal Filtering: The Wiener Filter Adaptive Filters for Removal of Interfere Application: Removal of Artifacts in the ECG Application: Maternal - Fetal ECG		
		 Event Detection: The P, QRS, and T waves in the ECG The first and second heart sounds The dicrotic notch in the carotid pulse EEG rhythms, waves, and transients The Pan-Tompkins algorithm for QRS detection Detection of the dicrotic notch 	R2 (Chapter 4)	
IV	Introduction to Human vision and perception	Digital Image Fundamentals Image enhancement in the spatial domain Basic Gray level transformations Histogram processing	R5 (Chapter2) R5 (Chapter3)	https://nptel.ac.in/courses/11 7/105/117105079/ Digital Image Processing
		 Smoothing spatial filters Sharpening spatial filters Image enhancement in the frequency domain 	R5 (Chapter 4)	Prof. P.K. Biswas, III Kharagpur