a. Block diagram
representation of a system; **b.** block diagram
representation
of an
interconnection
of subsystems

Note: The input, r(t), stands for *reference input*. The output, c(t), stands for *controlled variable*.

ltem no.	f(t)	F(s)		
1.	$\delta(t)$	1		
2.	u(t)	$\frac{1}{s}$		
3.	tu(t)	$\frac{1}{s^2}$		
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$		
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$		
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2+\omega^2}$		
7.	$\cos \omega t u(t)$	$\frac{s}{s^2+\omega^2}$		

Table 2.1Laplace transform table

ltem no.	Theorem		Name
1.	$\mathscr{L}[f(t)] = F(s)$	$= \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2(t)]$	$= F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	= F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$= e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$= \frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - \dot{f}(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[rac{d^n f}{dt^n} ight]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau) d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$= \lim_{s \to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$= \lim_{s \to \infty} sF(s)$	Initial value theorem ²

¹ For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts and no more than one can be at the origin.

² For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (i.e., no impulses or their derivatives at t = 0).

Table 2.2

Laplace transform theorems

$$\frac{R(s)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)} \xrightarrow{C(s)} C(s)$$

Figure 2.2 Block diagram of a transfer function

Table 2.3

Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

$$- \bigvee_{\substack{\text{Capacitor}}} v(t) = \frac{1}{C} \int_{0}^{t} i(\tau) d\tau \quad i(t) = C \frac{dv(t)}{dt} \quad v(t) = \frac{1}{C} q(t) \quad \frac{1}{Cs} \qquad Cs$$

$$- \bigvee_{\substack{\text{Resistor}}} v(t) = Ri(t) \quad i(t) = \frac{1}{R} v(t) \quad v(t) = R \frac{dq(t)}{dt} \qquad R \qquad \frac{1}{R} = G$$

$$- \bigvee_{\substack{\text{Inductor}}} v(t) = L \frac{di(t)}{dt} \quad i(t) = \frac{1}{L} \int_{0}^{t} v(\tau) d\tau \quad v(t) = L \frac{d^{2}q(t)}{dt^{2}} \qquad Ls \qquad \frac{1}{Ls}$$

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), $G = \Im$ (mhos), L = H (henries).

Figure 2.3 RLC network

Figure 2.4 Block diagram of series RLC electrical network

Figure 2.5 Laplace-transformed network

a. Two-loop electrical network; **b.** transformed two-loop electrical network; **c.** block diagram

(*a***)**

$$\frac{V(s)}{(R_1 + R_2)LCs^2 + (R_1R_2C + L)s + R_1} = \frac{I_2(s)}{(c)}$$

Figure 2.7 Block diagram of the network of Figure 2.6

Figure 2.8 Transformed network ready for nodal analysis

Figure 2.9 Three-loop electrical network

a. Operational amplifier;

b. schematic for an inverting operational amplifier;

c. inverting operational amplifier configured for transfer function realization. Typically, the amplifier gain, A, is omitted.

Figure 2.11 Inverting operational amplifier circuit for Example 2.14

Figure 2.12 General noninverting operational amplifier circuit

Figure 2.13 Noninverting operational amplifier circuit for Example 2.15

Figure 2.14 Electric circuit for Skill-Assessment Exercise 2.6

Table 2.4

Force-velocity, forcedisplacement, and impedance translational relationships for springs, viscous dampers, and mass

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

a. Mass, spring, and damper system;

b. block diagram

a. Free-body diagram of mass, spring, and damper system;

b. transformed free-body diagram

a. Two-degrees-of-freedom translational mechanical system⁸;
b. block diagram

a. Forces on M_1 due only to motion of M_1 **b.** forces on M_1 due only to motion of M_2 **c.** all forces on M_1

a. Forces on M_2 due only to motion of M_2 ;

b. forces on M_2 due only to motion of M_1 ;

c. all forces on M_2

Three-degrees-of-freedom translational mechanical system

Translational mechanical system for Skill-Assessment Exercise 2.8

	Component	Torque- angular velocity	Torque- angular displacement	Impedance $Z_{M}(s) = T(s)/ heta(s)$
Table 2.5 Torque-angular velocity,	$\begin{array}{c c} T(t) \ \theta(t) \\ \hline \\ 0000 \end{array}$	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	K
torque-angular displacement, and impedance	$\begin{array}{c} K \\ Viscous T(t) \theta(t) \\ \hline \\ damper \\ D \\ \hline \\ D \\ \end{array}$	$T(t) = D\omega(t)$	$T(t) = D\frac{d\theta(t)}{dt}$	Ds
rotational relationships for springs, viscous dampers, and inertia	$\underbrace{Inertia}_{J} \underbrace{\int_{J}}^{T(t) \theta(t)}$	$T(t) = J \frac{d\omega(t)}{dt}$	$T(t) = J \frac{d^2 \theta(t)}{dt^2}$	Js ²

Note: The following set of symbols and units is used throughout this book: T(t) = N-m (newton-meters), $\theta(t) = rad$ (radians), $\omega(t) = rad/s$ (radians/ second), K = N-m/rad (newton-meters/radian), D = N-m-s/rad (newton-meters-seconds/radian), $J = kg-m^2$ (kilogram-meters² = newton-meters-seconds²/radian).

Figure 2.22a. Physical system;b. schematic; c. block diagram

a. Torques on J_1 due only to the motion of J_1 **b.** torques on J_1 due only to the motion of J_2 **c.** final free-body diagram for J_1

a. Torques on J_2 due only to the motion of J_2 ; **b.** torques on J_2 due only to the motion of J_1 **c.** final free-body diagram for J_2

Three-degrees-offreedom rotational system

Figure 2.26 Rotational mechanical system for Skill-Assessment Exercise 2.9

Figure 2.27 A gear system

Transfer functions for **a.** angular displacement in lossless gears and **b.** torque in lossless gears

Figure 2.29 a. Rotational system driven by gears; b. equivalent system at the output after reflection of input torque; c. equivalent system at the input after reflection of impedances

a. Rotational mechanical system with gears;

b. system after reflection of torques and impedances to the output shaft;

c. block diagram

Figure 2.31 Gear train

a. System using a gear train; **b.** equivalent system at the input; **c.** block diagram

Rotational mechanical system with gears for Skill-Assessment Exercise 2.10

NASA flight simulator robot arm with electromechanical control system components

© Debra Lex.

Figure 2.36 Typical equivalent mechanical loading on a motor

Figure 2.37 DC motor driving a rotational mechanical load

a. DC motor and load; **b.** torque-speed curve;

c. block diagram

Figure 2.40 Electromechanical system for Skill-Assessment Exercise 2.11

Development of series analog: **a.** mechanical system; **b.** desired electrical representation; **c.** series analog; **d.** parameters for series analog

Figure 2.42 Series analog of mechanical system of Figure 2.17(a)

Figure 2.43 Development of parallel analog: a. mechanical system; b. desired electrical representation; c. parallel analog; d. parameters for parallel analog

 $M \longrightarrow$

(c)

f(t)

Figure 2.44 Parallel analog of mechanical system of Figure 2.17(a)

Figure 2.45a. Linear system;b. nonlinear system

Figure 2.46 Some physical nonlinearities

Linearization of 5 cos x about $x = \pi/2$

Nonlinear electrical network

Figure 2.50 Nonlinear electric circuit for Skill-Assessment Exercise 2.13

v(t)

Table 2.6Subsystems of the antenna azimuth position controlsystem

Subsystem	Input	Output
Input potentiometer	Angular rotation from user $\theta_i(t)$	Voltage to preamp $v_i(t)$
Preamp	Voltage from potentiometers $v_e(t) = v_i(t) - v_o(t)$	Voltage to power amp $v_p(t)$
Power amp	Voltage from preamp $v_p(t)$	Voltage to motor $e_a(t)$
Motor	Voltage from power amp $e_a(t)$	Angular rotation to load $\theta_o(t)$
Output potentiometer	Angular rotation from load $\theta_o(t)$	Voltage to preamp $v_o(t)$

human leg

of a

© 1996 McGraw-Hill, Inc.

Figure 2.53 Nonlinear electric circuit

Figure P2-3 (p. 112)

Figure P2-5 (p. 112)

(*b*)

Figure P2-9 (p. 114)

Figure P2-10 (p. 115)

Figure P2-11 (p. 115)

Figure P2-13 (p. 115)

Figure P2-15 (p. 116)

Figure P2-16 (p. 117)

Figure P2-18 (p. 117)

$$\begin{array}{c}
T(t) \\
 \hline J_1 = 2 \text{ kg-m}^2 \\
 \hline D_1 = 1 \text{ N-m-s/rad} \\
\hline N_2 = 12 \\
\hline D_2 = 2 \text{ N-m-s/rad} \\
\hline \end{bmatrix} \begin{array}{c}
 \hline J_2 = 1 \text{ kg-m}^2 \\
\hline J_2 = 1 \text{ kg-m}^2 \\
\hline \end{bmatrix} \begin{array}{c}
 \hline N_3 = 4 \\
\hline N_4 = 16 \\
\hline D_3 = 32 \text{ N-m-s/rad} \\
\hline \end{bmatrix} \begin{array}{c}
 \hline J_3 = 16 \text{ kg-m}^2 \\
\hline \end{bmatrix} \begin{array}{c}
 \hline K = 64 \text{ N-m/rad} \\
\hline \end{bmatrix} \\
\hline \end{array}$$

Figure P2-20 (p. 118)

Figure P2.34 Plate dispenser

Figure P2.35 a. Coupling of pantograph and catenary; b. simplified representation showing the active-control force

© 1997 ASME.