The HP 35670A Dynamic Signal Analyzer obtains frequency response data from a physical system. The displayed data can be used to analyze, design, or determine a mathematical model for the system.

Courtesy of Hewlett-Packard.

Input

Output

(c)

587

Frequency response plots for G(s) =1/(s + 2): separate magnitude and phase

Figure 10.5 Frequency response plots for G(s)= 1/(s + 2): polar plot

Figure 10.6 Bode plots of (*s* + *a*): a. magnitude plot; b. phase plot.

	Frequency a	$20\log\frac{M}{a}(dB)$		Phase (de	grees)
-	(rad/s)	Asymptotic	Actual	Asymptotic	Actual
-	0.01	0	0.00	0.00	0.57
	0.02	0	0.00	0.00	1.15
	0.04	0	0.01	0.00	2.29
	0.06	0	0.02	0.00	3.43
	0.08	0	0.03	0.00	4.57
	0.1	0	0.04	0.00	5.71
	0.2	0	0.17	13.55	11.31
	0.4	0	0.64	27.09	21.80
	0.6	0	1.34	35.02	30.96
	0.8	0	2.15	40.64	38.66
	1	0	3.01	45.00	45.00
	2	6	6.99	58.55	63.43
	4	12	12.30	72.09	75.96
	6	15.56	15.68	80.02	80.54
	8	18	18.13	85.64	82.87
	10	20	20.04	90.00	84.29
	20	26.02	26.03	90.00	87.14
	40	32.04	32.04	90.00	88.57
	60	35.56	35.56	90.00	89.05
	80	38.06	38.06	90.00	89.28
Inor	100	40	40.00	90.00	89.43

Table 10.1

Asymptotic and actual nor

frequency response data for (s + a)

Asymptotic and actual normalized and scaled magnitude response of

(s + a)

Asymptotic and actual normalized and scaled phase response of (s + a)

Normalized and scaled Bode plots for **a.** G(s) = s; **b.** G(s) = 1/s; **c.** G(s) = (s + a); **d.** G(s) = 1/(s + a)

Figure 10.10 Closed-loop unity feedback system

Figure 10.11 Bode log-magnitude plot for Example 10.2: a. components; b. composite

Bode phase plot for Example 10.2: **a.** components; **b.** composite

Bode asymptotes for normalized and scaled G(s) =

$$s^{2} + 2\zeta \omega_{n}s + \omega_{n}^{2}$$
:
a. magnitude;
b. phase

Table 10.4

Data for normalized and scaled log-magnitude and phase plots for $(s^2 + 2\zeta\omega_n s + \omega_n^2)$. Mag = 20 $\log(M/\omega_n^2)$

(table continues)

Freq.	Mag	Phase	Mag	Phase	Mag	Phase
ω/ω_n	(dB)	(deg)	(dB)	(deg)	(dB)	(deg)
	$\zeta = 0.1$	$\zeta = 0.1$	$\zeta = 0.2$	$\zeta = 0.2$	$\zeta = 0.3$	$\zeta = 0.3$
0.10	-0.09	1.16	-0.08	2.31	-0.07	3.47
0.20	-0.35	2.39	-0.32	4.76	-0.29	7.13
0.30	-0.80	3.77	-0.74	7.51	-0.65	11.19
0.40	-1.48	5.44	-1.36	10.78	-1.17	15.95
0.50	-2.42	7.59	-2.20	14.93	-1.85	21.80
0.60	-3.73	10.62	-3.30	20.56	-2.68	29.36
0.70	-5.53	15.35	-4.70	28.77	-3.60	39.47
0.80	-8.09	23.96	-6.35	41.63	-4.44	53.13
0.90	-11.64	43.45	-7.81	62.18	-4.85	70.62
1.00	-13.98	90.00	-7.96	90.00	-4.44	90.00
1.10	-10.34	133.67	-6.24	115.51	-3.19	107.65
1.20	-6.00	151.39	-3.73	132.51	-1.48	121.43
1.30	-2.65	159.35	-1.27	143.00	0.35	131.50
1.40	0.00	163.74	0.92	149.74	2.11	138.81
1.50	2.18	166.50	2.84	154.36	3.75	144.25
1.60	4.04	168.41	4.54	157.69	5.26	148.39
1.70	5.67	169.80	6.06	160.21	6.64	151.65
1.80	7.12	170.87	7.43	162.18	7.91	154.26
1.90	8.42	171.72	8.69	163.77	9.09	156.41
2.00	9.62	172.41	9.84	165.07	10.19	158.20
3.00	18.09	175.71	18.16	171.47	18.28	167.32
4.00	23.53	176.95	23.57	173.91	23.63	170.91
5.00	27.61	177.61	27.63	175.24	27.67	172.87
6.00	30.89	178.04	30.90	176.08	30.93	174.13
7.00	33.63	178.33	33.64	176.66	33.66	175.00
8.00	35.99	178.55	36.00	177.09	36.01	175.64
9.00	38.06	178.71	38.07	177.42	38.08	176.14
10.00	39.91	178.84	39.92	177.69	39.93	176.53

Freq.	Mag	Phase	Mag	Phase	Mag	Phase
$\omega/\omega_{\rm p}$	(dB)	(deg)	(dB)	(deg)	(dB)	(deg)
	$\zeta = 0.5$	$\zeta = 0.5$	$\zeta = 0.7$	$\zeta = 0.7$	ζ=1	$\zeta = 1$
0.10	-0.04	5.77	0.00	8.05	0.09	11.42
0.20	-0.17	11.77	0.00	16.26	0.34	22.62
0.30	-0.37	18.25	0.02	24.78	0.75	33.40
0.40	-0.63	25.46	0.08	33.69	1.29	43.60
0.50	-0.90	33.69	0.22	43.03	1.94	53.13
0.60	-1.14	43.15	0.47	52.70	2.67	61.93
0.70	-1.25	53.92	0.87	62.51	3.46	69.98
0.80	-1.14	65.77	1.41	72.18	4.30	77.32
0.90	-0.73	78.08	2.11	81.42	5.15	83.97
1.00	0.00	90.00	2.92	90.00	6.02	90.00
1.10	0.98	100.81	3.83	97.77	6.89	95.45
1.20	2.13	110.14	4.79	104.68	7.75	100.39
1.30	3.36	117.96	5.78	110.76	8.60	104.86
1.40	4.60	124.44	6.78	116.10	9.43	108.92
1.50	5.81	129.81	7.76	120.76	10.24	112.62
1.60	6.98	134.27	8.72	124.85	11.03	115.99
1.70	8.10	138.03	9.66	128.45	11.80	119.07
1.80	9.17	141.22	10.56	131.63	12.55	121.89
1.90	10.18	143.95	11.43	134.46	13.27	124.48
2.00	11.14	146.31	12.26	136.97	13.98	126.87
3.00	18.63	159.44	19.12	152.30	20.00	143.13
4.00	23.82	165.07	24.09	159.53	24.61	151.93
5.00	27.79	168.23	27.96	163.74	28.30	157.38
6.00	31.01	170.27	31.12	166.50	31.36	161.08
7.00	33.72	171.70	33.80	168.46	33.98	163.74
8.00	36.06	172.76	36.12	169.92	36.26	165.75
9.00	38.12	173.58	38.17	171.05	38.28	167.32
10.00	39.96	174.23	40.00	171.95	40.09	168.58

Table 10.4 (continued)

Normalized and scaled log-magnitude response for

 $(s^2 + 2\zeta\omega_n s + \omega_n^2)$

Figure 10.15 Scaled phase response for

 $(s^2+2\zeta\omega_ns+\omega_n^2)$

Table 10.5

Data for normalized and scaled log-magnitude and phase plots for $1/(s^2 + 2\zeta\omega_n s + \omega_n^2)$. Mag = $20 \log(M/\omega_n^2)$ (table continues)

Freq.	Mag	Phase	Mag	Phase	Mag	Phase
ω/ω_n	(dB)	(deg)	(dB)	(deg)	(dB)	(deg)
	ζ= 0.1	$\zeta = 0.1$	$\zeta = 0.2$	$\zeta = 0.2$	ζ=0.3	$\zeta = 0.3$
0.10	0.09	-1.16	0.08	-2.31	0.07	-3.47
0.20	0.35	-2.39	0.32	-4.76	0.29	-7.13
0.30	0.80	-3.77	0.74	-7.51	0.65	-11.19
0.40	1.48	-5.44	1.36	-10.78	1.17	-15.95
0.50	2.42	-7.59	2.20	-14.93	1.85	-21.80
0.60	3.73	-10.62	3.30	-20.56	2.68	-29.36
0.70	5.53	-15.35	4.70	-28.77	3.60	-39.47
0.80	8.09	-23.96	6.35	-41.63	4.44	-53.13
0.90	11.64	-43.45	7.81	-62.18	4.85	-70.62
1.00	13.98	-90.00	7.96	-90.00	4.44	-90.00
1.10	10.34	-133.67	6.24	-115.51	3.19	-107.65
1.20	6.00	-151.39	3.73	-132.51	1.48	-121.43
1.30	2.65	-159.35	1.27	-143.00	-0.35	-131.50
1.40	0.00	-163.74	-0.92	-149.74	-2.11	-138.81
1.50	-2.18	-166.50	-2.84	-154.36	-3.75	-144.25
1.60	-4.04	-168.41	-4.54	-157.69	-5.26	-148.39
1.70	-5.67	-169.80	-6.06	-160.21	-6.64	-151.65
1.80	-7.12	-170.87	-7.43	-162.18	-7.91	-154.26
1.90	-8.42	-171.72	-8.69	-163.77	-9.09	-156.41
2.00	-9.62	-172.41	-9.84	-165.07	-10.19	-158.20
3.00	-18.09	-175.71	-18.16	-171.47	-18.28	-167.32
4.00	-23.53	-176.95	-23.57	-173.91	-23.63	-170.91
5.00	-27.61	-177.61	-27.63	-175.24	-27.67	-172.87
6.00	-30.89	-178.04	-30.90	-176.08	-30.93	-174.13
7.00	-33.63	-178.33	-33.64	-176.66	-33.66	-175.00
8.00	-35.99	-178.55	-36.00	-177.09	-36.01	-175.64
9.00	-38.06	-178.71	-38.07	-177.42	-38.08	-176.14
10.00	-39.91	-178.84	-39.92	-177.69	-39.93	-176.53

Freq.	Mag Phase	Mag Phase	Mag Phase
$\omega/\omega_{\rm p}$	(dB) (deg)	(dB) (deg)	(dB) (deg)
	$\zeta = 0.5 \ \zeta = 0.5$	$\zeta = 0.7 \ \zeta = 0.7$	$\zeta = 1$ $\zeta = 1$
0.10	0.04 -5.77	0.00 -8.05	-0.09 -11.42
0.20	0.17 - 11.77	0.00 - 16.26	-0.34 -22.62
0.30	0.37 - 18.25	-0.02 -24.78	-0.75 -33.40
0.40	0.63 - 25.46	-0.08 -33.69	-1.29 -43.60
0.50	0.90 - 33.69	-0.22 -43.03	-1.94 -53.13
0.60	1.14 -43.15	-0.47 -52.70	-2.67 -61.93
0.70	1.25 -53.92	-0.87 - 62.51	-3.46 -69.98
0.80	1.14 -65.77	-1.41 -72.18	-4.30 -77.32
0.90	0.73 - 78.08	-2.11 -81.42	-5.15 -83.97
1.00	0.00 - 90.00	-2.92 -90.00	-6.02 -90.00
1.10	-0.98 -100.81	-3.83 -97.77	-6.89 -95.45
1.20	-2.13 -110.14	-4.79 -104.68	-7.75 -100.39
1.30	-3.36 -117.96	-5.78 -110.76	-8.60 -104.86
1.40	-4.60 -124.44	-6.78 -116.10	-9.43 -108.92
1.50	-5.81 -129.81	-7.76 -120.76	-10.24 -112.62
1.60	-6.98 -134.27	-8.72 -124.85	-11.03 -115.99
1.70	-8.10 -138.03	-9.66 -128.45	-11.80 -119.07
1.80	-9.17 -141.22	-10.56 -131.63	-12.55 -121.89
1.90	-10.18 -143.95	-11.43 -134.46	-13.27 -124.48
2.00	-11.14 -146.31	-12.26 -136.97	-13.98 -126.87
3.00	-18.63 -159.44	-19.12 -152.30	-20.00 -143.13
4.00	-23.82 -165.07	-24.09 -159.53	-24.61 -151.93
5.00	-27.79 -168.23	-27.96 -163.74	-28.30 - 157.38
6.00	-31.01 -170.27	-31.12 -166.50	-31.36 -161.08
7.00	-33.72 -171.70	-33.80 -168.46	-33.98 -163.74
8.00	-36.06 -172.76	-36.12 -169.92	-36.26 -165.75
9.00	-38.12 -173.58	-38.17 -171.05	-38.28 -167.32
10.00	-39.96 -174.23	-40.00 -171.95	-40.09 -168.58

Table 10.5 (continued)

Normalized and scaled log magnitude response for $1/(s^2 + 2\zeta\omega_n s + \omega_n^2)$

Figure 10.17 Scaled phase response for

$$1/(s^2 + 2\zeta\omega_n s + \omega_n^2)$$

Figure 10.18 Bode magnitude plot for G(s) =(s+3)/[(s+2) $(s^2+2s+25)]$: a. components; b. composite

Table 10.7Phase diagram slopes for Example 10.3

	Start: pole at -2	Start: zero at -3	Start: ω_n at -5	End: pole at -2	End: zero at -3	End: $\boldsymbol{\omega}_n=$ 5
Frequency (rad/s)	0.2	0.3	0.5	20	30	50
Pole at -2 Zero at -3 $\omega_n = 5$	-45	-45 45	$-45 \\ 45 \\ -90$	$0 \\ 45 \\ -90$	$0 \\ -90$	0
Total slope (deg/dec)	-45	0	-90	-45	-90	0

Figure 10.19 Bode phase plot for G(s) =(s + 3)/[(s + 2)) $(s^2 + 2s + 25)]$: a. components; b. composite

Figure 10.20 Closed-loop control system

Figure 10.21 Mapping contour *A* through function *F*(*s*) to contour *B*

Figure 10.22 Examples of contour mapping

Figure 10.23 Vector representation of mapping

Mapping examples: **a.** contour does not enclose closed-loop poles; **b.** contour does enclose closed-loop poles

(b)

Vector evaluation of the Nyquist diagram for Example 10.4:

a. vectors on contour at low frequency;

b. vectors on contour around infinity;

c. Nyquist diagram

Detouring around open-loop poles:

- **a.** poles on contour;
- **b.** detour right;
- c. detour left

- **a.** Contour for Example 10.5;
- b. Nyquist diagram for Example 10.5

Demonstrating Nyquist stability:

a. system;

b. contour;

c. Nyquist diagram
Figure 10.31 a. Contour for Example 10.6; b. Nyquist diagram

a. Contour and root locus of system that

is stable for small gain and unstable for large gain;

b. Nyquist diagram

a. Contour and root locus of system that is unstable for small gain and stable for large gain;

b. Nyquist diagram

- a. Portion of contour to be mapped for Example 10.7;
- **b.** Nyquist diagram of mapping of positive imaginary axis

Nyquist diagram showing gain and phase margins

Figure 10.36 Bode log-magnitude and phase diagrams for the system of Example 10.9

Figure 10.37 Gain and phase margins on the Bode diagrams

Figure 10.38 Second-order closed-loop system

Representative logmagnitude plot of Eq. (10.51)

Closed-loop frequency percent overshoot for a two-pole system

Figure 10.41 Normalized bandwidth vs. damping ratio for:

- **a.** settling time;**b.** peak time;
- **c.** rise time

Figure 10.42 Constant *M* circles

Figure 10.43 Constant *N* circles

Nyquist diagram for Example 10.11 and constant *M* and *N* circles

Figure 10.45 Closed-loop frequency response for Example 10.11

Figure 10.46 Nichols chart

Nichols chart with frequency response for G(s) = K/[s(s + 1)(s + 2)] superimposed. Values for K = 1 and K = 3.16 are shown.

Phase margin vs. damping ratio

Open-loop gain vs. open-loop phase angle for –3 dB closed-loop gain

Figure 10.50 a. Block diagram (figure continues)

Figure 10.50 (continued) b. Bode diagrams for system of Example 10.13

Figure 10.52 Bode log-magnitude plots for Example 10.14

Figure 10.53 Bode log-magnitude plot for Skill-Assessment Exercise 10.10

Figure 10.54 Effect of delay upon frequency response

Frequency response plots for G(s) =K/[s (s + 1)(s + 10)]with a delay of 1 second and K = 1: **a.** magnitude plot; **b.** phase plot

Step response for closed-loop system with G(s) =5/[s(s+1)(s+10)]: **a.** with a 1 second delay; **b.** without delay

Bode plots for subsystem with undetermined transfer function

Figure 10.58 Original Bode plots minus response of $G_1(s) =$ $25/(s^2 + 2.4s + 25)$

Original Bode plot minus response of $G_1(s)G_2(s) =$ $[25/(s^2 + 2.4s + 25)]$ $\cdot [90/(s + 90)]$

Figure 10.60 Bode plots for Skill-Assessment Exercise 10.12

Figure 10.61 Open-loop frequency response plots for the antenna control system (K = 1)

Figure P10-1 (p. 675)

Figure P10-4 (p. 677)

System 2

Figure P10.7

Figure P10-9 (p. 681)

Figure P10.10

Figure P10.11

Figure P10.12 Soft Arm position control system block diagram

Figure P10.13 Floppy disk drive block diagram

AdeptOne, a four- or five-axis industrial robot, is used for assembly, packaging, and other manufacturing tasks.

© 1994 Adept Technology, Inc.

Courtesy of Nikon, Inc.

Figure P10.15

c. block diagram

a. A cutaway view
of a Nikon 35-mm camera
showing parts of the CCD
automatic focusing
system;
b. functional block
diagram;

(*c*)

Figure P10.16 Block diagram of a ship's roll stabilizing system

Table 10.2Bode magnitude plot: slope contribution from each pole and
zero in Example 10.2

	Frequency (rad/s)					
Description	0.1 (Start: Pole at 0)	1 (Start: Pole at -1)	2 (Start: Pole at –2)	3 (Start: Zero at –3)		
Pole at 0 Pole at -1 Pole at -2 Zero at -3 Total slope (dB/dec)	$ \begin{array}{r} -20 \\ 0 \\ 0 \\ -20 \end{array} $	$-20 \\ -20 \\ 0 \\ 0 \\ -40$	$ \begin{array}{r} -20 \\ -20 \\ -20 \\ 0 \\ -60 \end{array} $	$-20 \\ -20 \\ -20 \\ 20 \\ -40$		

Table 10.2

Bode magnitude plot: slop contribution from each pole and zero in Example 10.2

	Frequency (rad/s)						
Description	0.1 (Start: Pole at -1)	0.2 (Start: Pole at -2)	0.3 (Start: Zero at -3)	0 (End: Pole at -1)	20 (End: Pole at -2)	30 (End: Zero at -3)	
Pole at -1 Pole at -2 Zero at -3 Total slope (deg/dec)	-45 -45	-45 -45 -90	$-45 \\ -45 \\ 45 \\ -45$	$\begin{array}{c} 0\\ -45\\ 45\\ 0\end{array}$	0 45 45	0 0	

Table 10.3Bode phase plot: slope contribution from each pole and zero in Example 10.2

Table 10.3

Bode phase plot: slop contribution from each pole and zero in Example 10.2

	Frequency (rad/s)				
Description	0.01 (Start: Plot)	2 (Start: Pole at –2)	3 (Start: Zero at –3)	$5 \\ (Start: \\ \omega_n = 5)$	
Pole at -2 Zero at -3 $\omega_n = 5$ Total slope (dB/dec)	0 0 0 0	$-20 \\ 0 \\ 0 \\ -20$	$ \begin{array}{r} -20 \\ 20 \\ 0 \\ 0 \end{array} $	$-20 \\ 20 \\ -40 \\ -40$	

Table 10.6 Magnitude diagram slopes for Example 10.3

Table 10.6

Magnitude diagram slopes for Example 10.3