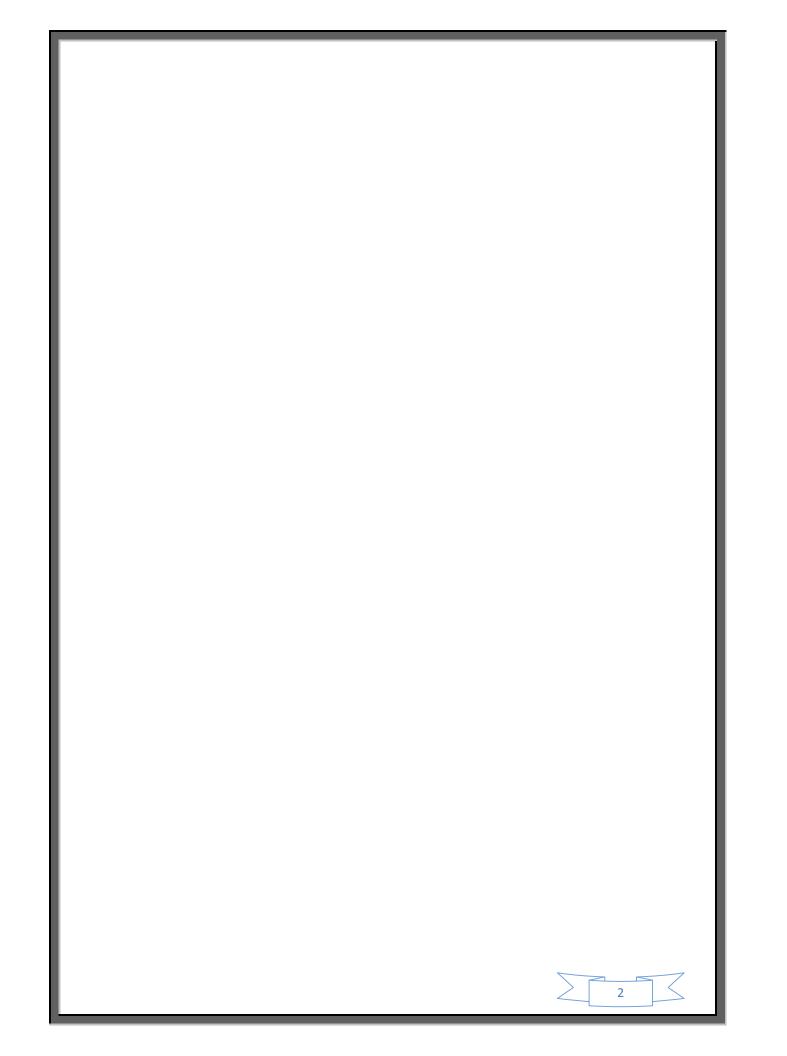
METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR


SEMESTER WISE COURSE STRUCTURE


B. Tech. 3rd Semester

S.	COURSE NO.	TITLE / SUBJECT	ENG	ENGAGEMENT		C R E D I T		
NO.			L	Т	Р	TH.	Р	TOTAL
1	MME-301	Introduction to Metallurgy and	3	1	-	4	-	4
		Materials						
2	CHM-03	Metallurgical & Instrumental	2	1	-	3	-	3
		Analysis						
	CHM-03 P	Laboratory Practice in	-	-	2	-	1	1
		Metallurgical & Instrumental						
		Analysis						
3.	MTH-308	Mathematics-III	3	1	-	4	-	4
4.	CIV-307	Geology and Mineralogy	2	1	-	3	-	3
	CIV-308 P	Laboratory Practice in Geology	-	-	2	-	1	1
		and Mineralogy						
5.	MEC-302	Mechanics of Solids	2	1	-	3	-	3
6.	ELE-303	Electrical Technology	2	1	-	3	-	3
	ELE-304P	Laboratory Practice in Electrical	-	-	2	-	1	1
		Technology						
		TOTAL	14	6	6	20	3	23
			1					

SUBJECTS OFFERED BY THE DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING TO THE THIRD (3rd) SEMESTER STUDENTS OF SISTER DISCIPLINES

1.	MME-302	Electrical Engineering Materials	2	1	-	3	-	3
		(For Electrical Engineering						
		Department)						
2.	MME-303	Electronic Engineering Materials	2	1	-	3	-	3
		(For Electronics and						
		Communication Department)						

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-301 Course Title: Introduction to Metallurgy and Materials

2. Contact Hours : L: 3 ; T: 1 ;	P: 0
3. Examination Duration (Hrs): Theory:	0 3 Practical : 0 0
4. Relative Weightage: M-I : 2 0 M-II:	2 0 ASM: 1 0 ME: 5 PRE: 0 0
5. Credits: 0 4 3 rd Semester:	\checkmark
	Autumn Spring

6. Objective: To familiarize the students with the fundamentals and other aspects of various metallurgical processes.

S.No	Particulars			
•		Hours		
1.	An introduction to Metallurgy and Classification of Metallurgical Processes.	04		
2.	Classification of Engineering Materials based on Engineering properties. A general discussion on other engineering materials plastics, rubber, polymers, ceramics, refractories, glasses, composites etc.	08		
3.	Introduction of Nano-technology; its importance and applications			
4.	A brief discussion on important ferrous and non-ferrous materials and their production processes (flow sheets giving important parameters).	03		
5.	General introduction to phase rule and phase diagrams (Binary systems). An overview of iron carbon equilibrium diagram and the critical phenomenon. Brief discussion on plastic deformation & Strain Hardening.	08		
6.	Bonding in solids, crystal structure & imperfections. Plastic deformation in single crystals.	07		
7.	Single crystals, polycrystalline materials and factors affecting their mechanical properties. Yield strength, tensile strength and rupture strength. Ductility and malleability, toughness and hardness of materials.	05		
	Total	42		

S.No.	Name of Book	Author(s)	Publisher	Year of Publications
1.	Principles of Extractive Metallurgy	J. Newton	J.Wiley	1959
2.	Materials Science and Engineering	V.Raghvan	PHI	2008
3.	Elements of Materials Science	Van Valack	Addison Wesley	1998
4.	Engineering Materials Science	Richards	Wadworth Pub. Co	1961
5.	Structure and Properties of Materials	Wulff Series	John Wiley (New York)	1966
6.	Material Science	R. S. Khurmi & R. S. Sedha	S. Chan	2005
7.	Engineering Materials II : An introduction to microstructures, processing & design	Ashby, M.F.,& D.R.M. Jones	Pergamum Press	2006
8.	Material Science	Callister	Willey	2008
9.	Principles of Material Science Engineering	Smith	McGraw Hill	1990

NAME OF DEPARTMENT : Metallurgical & Materials Engineering

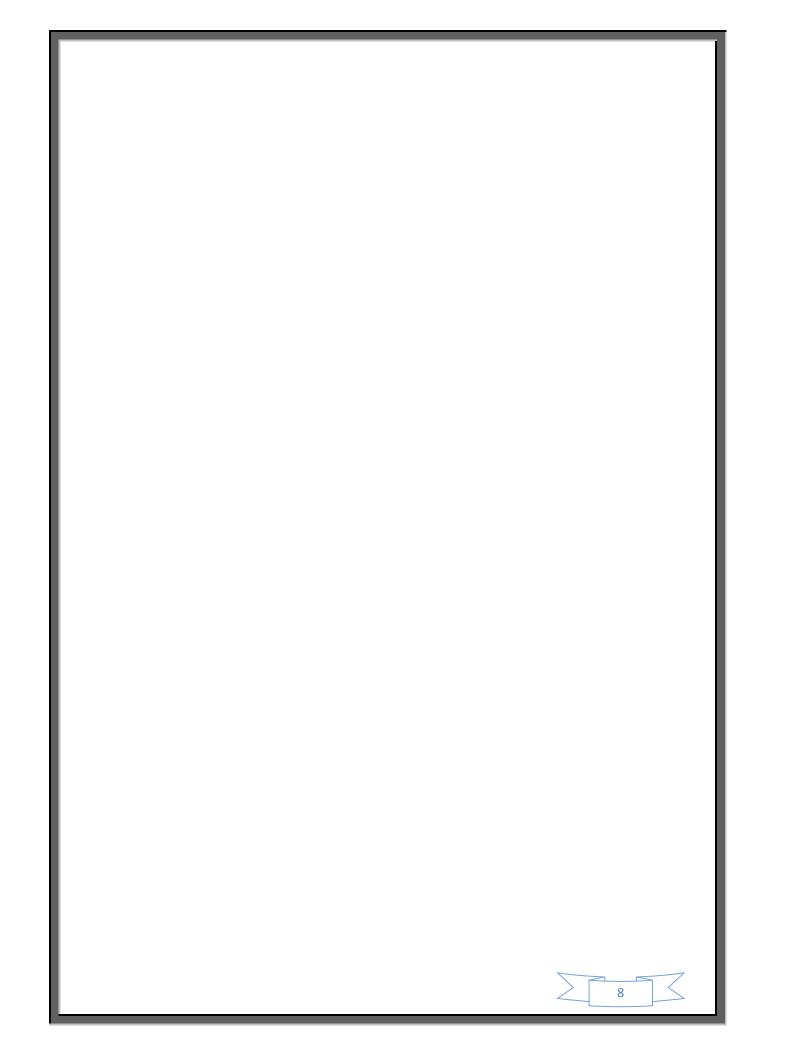
1. Subject Code: CHM-03 Course Title: Metallurgical and Instrumental Analysis

2. Contact Hours: L: 2 ;	T: 1;	P: 0	
3. Examination Duration (Hrs):	Theory: 0	B Pract	ical: 0 0
4. Relative Weightage: M-I: 2 0	M-II : 2 0	ASM 1 0	ME: 5 0 PRE: 0 0
5. Credits: $0 3^{rd}$ Sem	ester: √]
	Autu	1	0

6. Objective: To acquire knowledge and become familiar with the various metallurgical analysis techniques and the instruments involved therein.

S.No.	Particulars	Contact Hours
1	Principles of Volumetric, Gravimetric and Fire assay methods. Electrogravimetry, potentiometry, polarography, colorimetry and conductometry.	10
2.	Absorptimetry, Emission spectrophotometry, Atomic Absorption Spectrophotometry, flame photometry, colorimetry and X-Ray fluorescence.	10
3.	Determination of gases in metal. Introduction to Thermal Analysis (DTA, TMA, TGA, DSC, etc.) Chromatography, Radio-chemical analytical methods.	12
4.	Applications of the above analytical methods to the assessment and evaluation of alloys, ores, slags, ceramics, glass and refractories.	10
	Total	42

S.No.	Name of the Book	Author(s)	Publisher	Year of Publication
1.	Instrumental Methods of Analysis	Williard H.H., Merritt L.L., and Dean J.A.	Wadsworth	1981
2.	Standard Methods of Chemical Analysis, Vol: III A	Welcher F.J.	Van Nostrand	1962
3.	Instrumental methods of Analysis	Ewing G.W.	McGraw- Hill	1985
4.	Metallurgical Analysis	Jain and Agarwal,	Khanna Publishers, New Delhi	1985
5.	Problems in Quantitative Analysis	A. Masakin,	Mir	1984
6.	A brief introduction to modern chemical Analysis	D.G. Peters, J.H. Hayes	Saunders	1976
7.		and G.M. Hieftje		
8.	Physico-chemical Analysis	YU Lyalikov	Mir	1974


NAME OF DEPARTMENT : Metallurgical & Materials Engineering
1. Subject Code: CHM-03P Course Title: Laboratory Practice in Metallurgical and Instrumental Analysis
2. Contact Hours : L: 0 ; T: 0; P: 2
3. Examination Duration (Hrs): Theory: 0 0 Practical: 0 2
4. Relative Weightage: MSLE: 2 5 ESLE: 2 5
5. Credits: $0 1 3^{rd}$ Semester: $$
Autumn Spring

6. Objective: To acquire knowledge of equipment*ø*s and become familiar with the basic analytical methods.

7. List of experiments:

S.No.	Experiments
1.	Determination of copper (II) as copper oxide
2.	Gravimetric estimation of aluminium
3.	Determination of Iron (III)
4.	Determination of barium as barium sulphate.
5.	Distribution coefficient of iodine between water & CCl ₄
6.	Determination of acid value of oil.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MTH-308	Course	Title: Mathe	matics-III		
2. Contact Hours: L: 3;	T:1;	P: 0			
3. Examination Duration (Hrs):	Theory:	0 3	Practical: 0	0	
4. Relative Weightage: M-I 2 0	M-II:	2 0 ASM	: <u>1</u> 0 ME:	5 0	PRE: 0 0
5. Credits: $0 4 3^{rd}$	Semester:	√ Autumn	Spring		

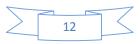
6. Objective: To understand and familiarize with the algebra of matrices and various aspects of statistics and probability.

S. No.	Particulars	Contact Hours
1	MATRICES: Definitions and algebra of matrices. Transverse of a matrix Symmetric, skew-symmetric, Hermitian, and Skew-Hermitian matrices inverse matrix, orthogonal and unitary matrices, Solution of simultaneous equations by matrix method. Triangular matrices, Rank of a matrix, equivalent matrices, elementary transformations, normal form, and Eigen vectors of a matrix, Caley-Hamilton theorem. Quadratic forms.	18
2.	STATISTICS AND PROBABILITY Measures of central tendency and Measures of variations (Dispersions), Moments, Measures of Skewness and kurtosis. Random experiment, sample space, events, classical, statistical and axiomatic definitions of probability. Statements and proof of theorems on addition and multiplication of probabilities. Simple problems. Bayes Theorem on conditional probability. Random variable, derivation of formula for mean, variance and moments of random variables for discrete and continuous cases. Laws of expectation, Binomial, Poisson and normal distributions, Beta and Gamma distribution. T-distribution, F- distribution, Chi-square distribution and their applications. Method of least squares, fitting a straight line and parabola of degree $\div p \emptyset$ Regression and correlation Multiple and partial correlation.	24
	Total	42

S. No.	Name of the Book	Author(s)	Publisher	Year of Publications
1.	Fundamentals of Mathematical Statistics	S.C Gupta and V.K Kapoor	Sultan Chan and Sons, N.Delhi	2000
2.	Statistical Theory and Methodology in Science & Engineering.	Brownlee	John Wiley and Sons	1965
3.	Introduction to Mathematical Statistics, 3 rd Ed.	R.E. Walpole.	Prentice Hall	1987

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: CIV-307	Course T	f itle: Geolog	gy and Mineralog	y
2. Contact Hours: L: 2;	T: 1;	P: 0		
3. Examination Duration (Hrs)	: Theory:	0 3	Practical : 0 ()
4. Relative Weightage: M-I: 2	0 M-II:	2 0 AS	M: 1 0 ME:	5 0 PRE: 0 0
5. Credits: 0 3	3 rd Semester:	√ Autumn	Spring	


6. Objective: To familiarize with the fundamentals and other aspects of rocks, minerals, crystals etc.

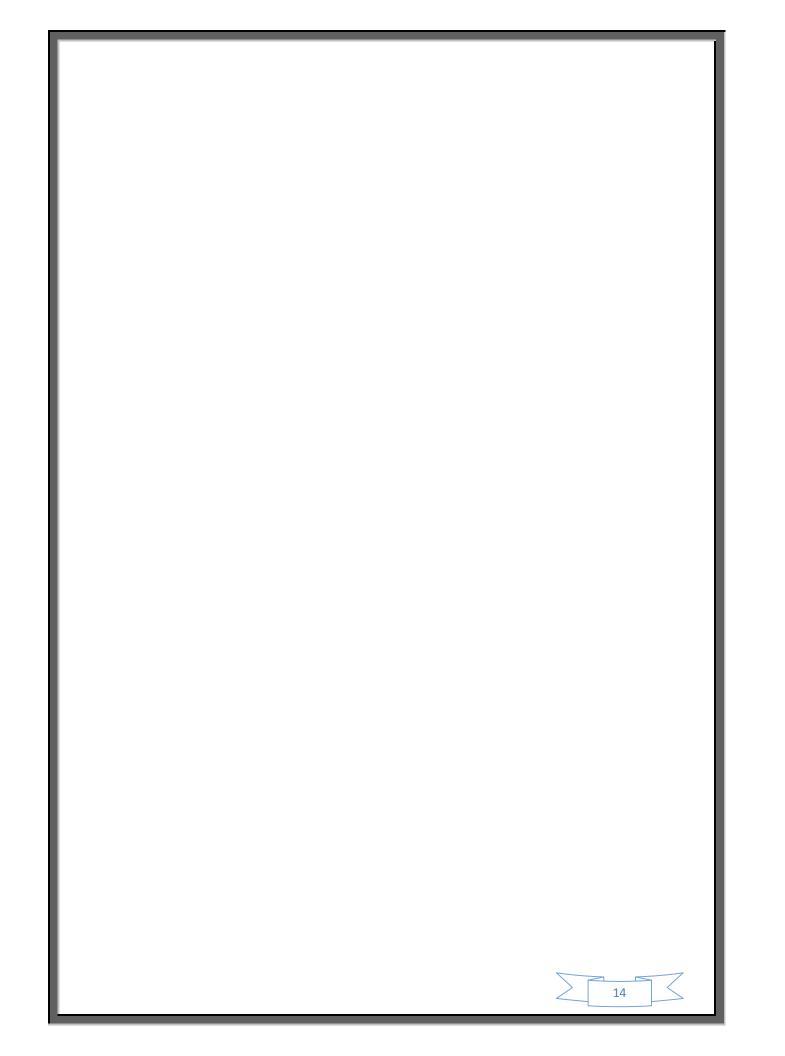
7. Details of the Course:

S. No.	Particulars	Contact Hrs.
1.	 Physical Geology: Introduction to Science of Geology. The crust of the earth and its composition. Minerals & rocks. The structure, hydrosphere, lithosphere and biosphere. Geological work of atmosphere. Weathering. Erosion, transportation and deposition by wind, water and ice. Features developing due to crust and depositional processes. Introduction to geological structures. Mineralogy: Rock forming minerals and ore minerals. Processes of mineral formation. Physical properties of minerals. Study of minerals under microscope. Introduction to crystallography. Elements of crystal. The six crystal systems: Isometric, Tetragonal, Hexagonal, Orthorhombic and Monoclinic systems. Study of symmetry elements and common forms of the normal class of each of these systems. Introduction to ore mineral. Principle ore minerals of Aluminium, Copper, lead, zinc, antimony, nickel, tin, chromium, magnesium and iron. Their important properties, associations, impurities, mode of formation, mode of occurrence and distribution in India. Study of refractory minerals, coal and petroleum. Practicals to familiarize the students with minerals, study of crystal models and 	12 30
	natural crystals, blow pipe analysis of a few common ores, and microscopic study of few important rock-forming and ore minerals.	
	Total	42

11

S. No.	Name of	Author(s)	Publisher	Year of
	Book/Author/Publisher			Publications
1.	A Textbook Of Mineralogy with an extended Treatise on Crystallography & Physical Mineralogy	Dand & Ford	Asia Publishing House, Delhi	1966
2.	Rutleyøs Elements Of Mineralogy	H.H Read	Thomas Murray & Co., London	1947
3.	Geology Of Industrial Rocks & Minerals	Bates	Harper & Bros., New York	1960
4.	Engineering & General Geology	Parbin Singh	S.K. Kataria & Sons, Delhi	2008
5.	Prospecting for Minerals	Y.D Kitaisky	Foreign Languages Publishing House, Moscow	1976
6.	Physical Geology	Skinner & Porter	John Wiley & Sons, New York	1987

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: CIV-308P	Course Title: Labora	atory Practice in Geology and Mineralogy
2. Contact Hours : L: 0;	T: 0; P: 2	
3. Examination Duration (Hrs):	Theory: 0 0	Practical: 0 2
4. Relative Weightage: MSLE	2 5 ESLE:	2 5
5. Credits: 0 1 3 rd	Semester: √	
	Autumn	Spring

6. Objectives: To familiarize with the identification and classification of different minerals, rocks and crystals.

7. List of Experiments:

S. No.	Experiments
1.	The study of physical properties of minerals (form, lustre, fracture, cleavage, streak, hardness, specific gravity, colour etc).
2.	Determination of specific gravity by: a. Jollyøs balance b. The beam balance c. The walkers steel yard balance.
3.	Study of rocks and their characteristics (Igneous - Granite & Basalt; Sedimentary-Sandstone and Limestone; and Metamorphic - Quartzite, Marble, slate, Gneiss and Schist).
4. 5.	Study of some important minerals.
Э.	Study and sketching of various types of structure faults (normal, reverse, dip, shake, non- plunging and plunging faults.
6.	Study of models of some crystal systems, class, form, elements of symmetry and general symbol etc.
7.	Determination of dip and strike with a clinometers compass.

NAME OF DEPARTMENT : Metallurgical & Materials Engineering

1. Subject Code: MEC-302	Course Ti	tle: Mechai	nics of Solids
2. Contact Hours: L: 2;	T:1;	P: 0	
3. Examination Duration (Hrs):	Theory:	0 3	Practical: 0 0
4. Relative Weightage: M-I: 2 0] M-II : [2 0 ASM	I : 1 0 ME: 5 0 PRE: 0 0
5. Credits: $0 3 3^{rd}$	Semester:	\checkmark	
		Autumn	Spring

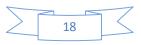
6. Objective: To familiarize with the fundamental principles of stress and strain, mechanical properties and to understand the response of members to flexural loads etc.

7. Details of the Course:

S.No.	Particulars	Contact Hours
1.	Analysis of Stresses and Strains - Two dimensional state of stress and strain, Principle stresses/strains and principle planes/ axes. The stress and strain circles. Measurement of techniques as applied to stresses, etc. Poissonøs ratio, Hookeøs Law, Surface and Volumetric strains, Elastic constants and their relationships. Mechanical Properties: Stress - Strain diagrams.	09
2.	Elastic and plastic behaviour under multi-axial stresses. Mechanical properties at high and low temperatures under static and cyclic stresses. Members in Bi-Axial State of Stresses: Stresses and strain in thin cylindrical and spherical shells subjected to internal pressures.	14
3.	Members subject to Flexural Loads: Theory of simple bending. Distribution of normal and shear stresses, principle stresses. Built-up and composite beams. Bending movements, slope and deflection.	09
4.	Various methods of deflection. Symmetrical and un-symmetrical bending. Fracture Mechanics. Columns: Short struts subjected to axial and multi-axial loads. Eulerøs theorem. Critical and Eccentric loading.	10
	Total	42

15

S No.	Name of Book	Author(s)	Publisher	Year of Publications
1.	Mechanics of Materials	Timoshenko &	Nelson	2003
		Gere	Thornes	
2.	Mechanics of Materials	E.P.Popov		1959
			Prentice - Hall	
3.	Engineering Mechanics	Irwing and		2000
		Shames	Prentice Hall	


NAME OF DEPARTMENT: Metallurgical & Materials Engineering

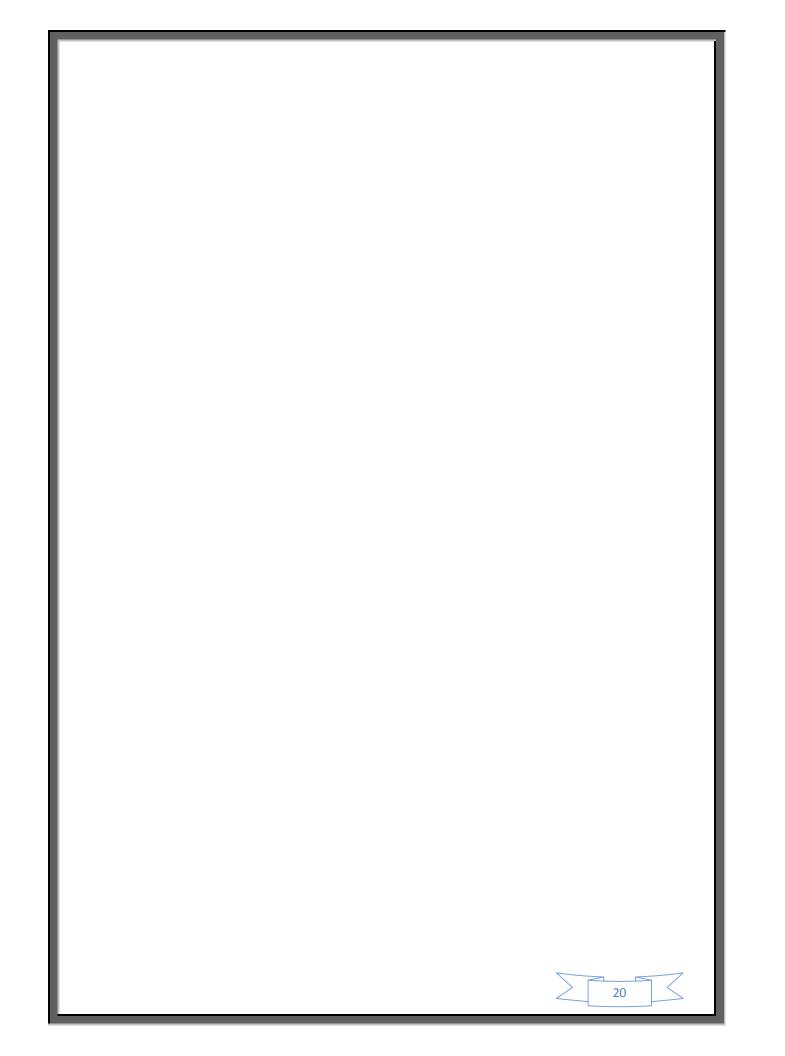
1. Subject Code: ELE-303	Course Title: Electrical Technology
2. Contact Hours: L: 2;	T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2 0	M-II: 20 ASM: 10 ME: 50 PRE: 00
5. Credits: $0 3 3^{rd}$	Semester: √ Autumn Spring

6. Objective: To obtain sound knowledge in the basic concepts of electrical technology.

S. No.	Particulars	Contact Hours
1.	Electric circuit laws and D.G. Circuits- super position principle. Thevenings theorem.	10
2.	Maximum power transfer theorem. A.C. Circuits, Basic Definitions. Solution of R-L-G circuit, three phase balanced star and delta connection circuits.	19
3.	D.C generators and motors, and their characteristics, three phase alternators, synchronous and induction motors.	13
	Total	42

S. No.	Name of Book	Author(s)	Publisher	Year of Publications
1	Drinsinter of Elect Environment	Winser of Delteror	Durant's a Hall	
1.	Principles of Elect. Engineering	Vincent Deltoro	Prentice-Hall	1972
2.	Basic Elect. Engineering	Fitzgerauld	McGraw- Hill	1981
3.	Electrical Machines	Nagrath/Kothari	McGraw- Hill	2006
4.	Basic Circuit Analysis	Schaum Series.	McGraw- Hill	1992

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: ELE-304P	Course Title: Laboratory Practice in Electrical Technology
2. Contact Hours: L: 0;	T: 0; P: 2
3. Examination Duration (Hrs):	Theory: 0 0 Practical: 0 2
4. Relative Weightage: MSLE	E: 2 5 ESLE: 2 5
5. Credits: $0 1 3^{rd}$	Semester: $$

6. Objective: To provide practical knowledge about the working of various relevant laboratory equipments.

7. List of experiments:

S. No.	Experiments
1.	Verification of KVL
2.	Verification of KCL
3.	Verification of Supper position theorem.
4.	Verification of Thevenings theorem
5.	Verification of Max. Power Transfer theorem
6.	Delta-star Transformation
7.	Obtaining resonance in RLC circuits
8.	Measurement of Power and Power factor for a 3 load
9.	Constructional details of a single phase transformer

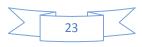
NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-302 Course Titl	e: Electrical Engineering. Materials
2. Contact Hours : L: 2; T: 1;	P: 0
3. Examination Duration (Hrs): Theory:	0 3 Practical : 0 0
4. Relative Weightage: M-I: 2 0 M-II:	2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 3 rd Semester	: 🗸
	Autumn Spring

6. Objective: To familiarize with the basic principles related to the physics of materials relevant to electrical, magnetic and optical properties.

S. No.	Particulars	Contact
		Hours
1.	Crystalline nature of solids. Transformation in alloys. Electrical conduction in metals and alloys. Applications of conductors. Some important resistor alloys. Di-electrical materials and their electrical properties. Semiconductors, their properties and applications.	14
2.	Magnetic properties of solids - types of magnetism, magnetic domain, soft magnetic materials - their characteristics, applications of iron- silicon, iron-nickel and iron-cobalt alloys. Hard magnetic materials, their properties and applications. Some important carbon steels and precipitation hardening type magnet alloys and their applications.	20
3.	Optical properties of materials. Super conducting theory and materials.	08
	Total	42

S. No.	Name of Book	Author(s)	Publisher	Year of Publications
1.	Introduction to solid state Physics	C. Kittel	Wiley	1986
2.	Solid State Physics	Dekker	Prentice Hall	1965
3.	Physical Metallurgy Principles	Reedhill	Affliliated East West Press Pvt Ltd.	2008
4.	Theoretical Structural Metallurgy	Cottrell	Arnold	1962
5.	Electricity and Magnetism	H.E. Duckworth	Holt, Renihart , Winston	1960
6.	The Structure and Properties of Materials Vol.4	Rose, Shepperd, Wulf.	John Wiley (New York)	1966



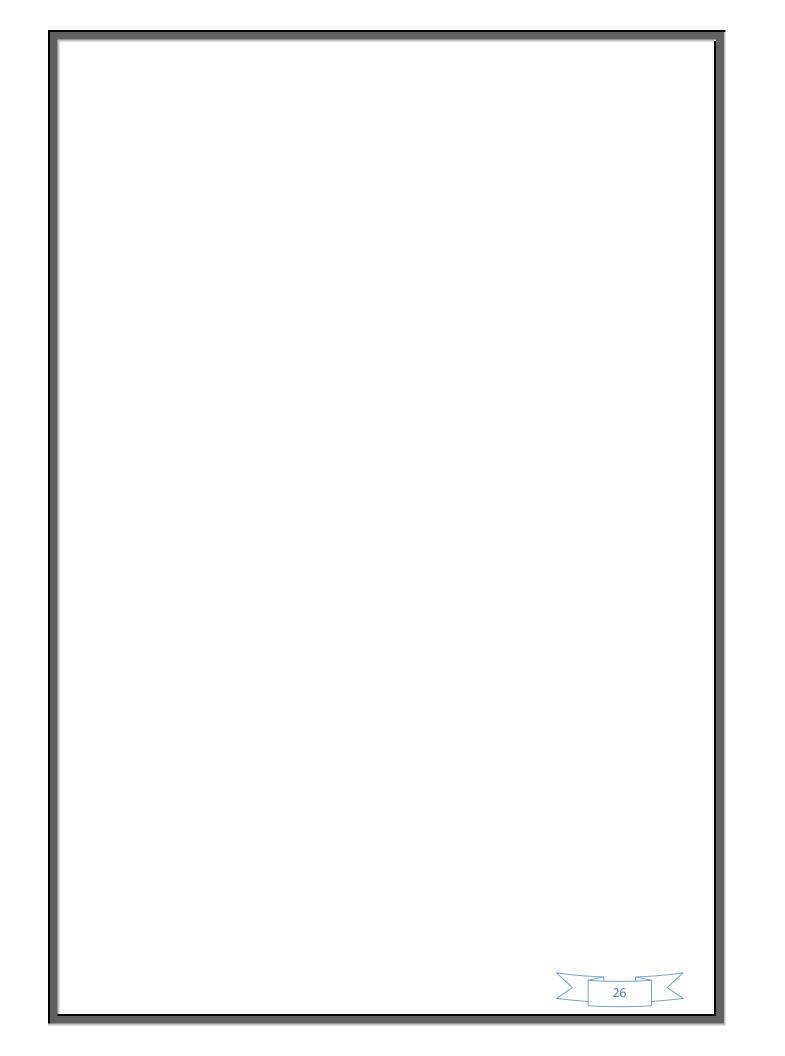
NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-303	Course Title: Electronics Engineering Materials		
2. Contact Hours: L: 2;	T: 1; P: 0		
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0		
4. Relative Weightage: M-I: 2 0	M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 2 0		
5. Credits: $0 3 3^{rd}$	Semester: $$		

6. Objective: To familiarize with the basic principles related to the physics of materials relevant to electrical, electronic, magnetic and optical properties.

S. No.	Particulars	Contact
		Hours
1.	Crystal structure: crystalline state, Bravais lattices, Miller indices, reciprocal lattice. Common crystal structures. Interference phenomenon. Braggøs diffraction. Crystal imperfections.	06
2.	Free electron theory, conduction in Metal and alloys conductor, resistors.	06
3.	Growth of single crystal, zone refining technique.	03
4.	Semiconductors: their properties and applications.	03
5.	Magnetism: Magnetic Properties of materials, diamagnetism, paramagnetism, ferromagnetism, black wall, domain dimensions. Anti- ferromagnetism ferrimagnetism. Ferrites, Magnetic Materials: Fe, Si, Ni, Co. Hard magnetic materials.	10
6.	Dielectric materials, electric & optical properties, polarization in static and alternating field, piezoelectricity, polarizability and dielectric constant, optical transition in solids, absorption and emission of radiation, dielectrics, capacitors, inductors. Superconductivity and Superconductors.	14
	Total	42

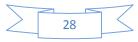
Name of the Book	Author(s)	Publisher	Year of
			Publications
Introduction to solid state Physics	C. Kittel	Wiley	1986
Solid State Physics	Dekker	Prentice Hall	1965
Physical Metallurgy Principles	Reedhill	Affliliated E-W Press Pvt Ltd. Arnold	2008
Theoretical Structural Metallurgy	Cottrell	Hott, Renihart.	1962
Electricity & Magnetism	H.E.	Winston	
	Duckworth	Wiley Eastern Ltd.	1960
The Structure & Properties of	Rose R M,		1987
	•	Wilow	
Toperaes	A, WUIII J	willey	
	Callister		
Material Science			2008
	Introduction to solid state Physics Solid State Physics Physical Metallurgy Principles Theoretical Structural Metallurgy Electricity & Magnetism The Structure & Properties of Materials, Vol IV: Electronic Properties	Introduction to solid state PhysicsC. KittelSolid State PhysicsDekkerPhysical Metallurgy PrinciplesReedhillTheoretical Structural MetallurgyCottrellElectricity & MagnetismH.E. DuckworthThe Structure & Properties of Materials, Vol IV: Electronic PropertiesRose R M, Shephard L A, Wulff JCallister	Introduction to solid state PhysicsC. KittelWileySolid State PhysicsDekkerPrentice HallPhysical Metallurgy PrinciplesReedhillAffliliated E-W Press Pvt Ltd. ArnoldTheoretical Structural Metallurgy Electricity & MagnetismCottrell H.E. DuckworthHott, Renihart, Winston Wiley Eastern Ltd.The Structure & Properties of Materials, Vol IV: Electronic PropertiesRose R M, Shephard L A, Wulff JWiley Wiley Eastern Ltd.


SEMESTER WISE COURSE STRUCTURE

B. Tech. 4th Semester

S.	COURSE NO.	TITLE / SUBJECT	ENGAGEMENT		(C R E D I T		
NO.			L	Т	Р	TH.	Р	TOTAL
1.	MME-401	Thermodynamics of Materials	3	2	-	5	-	5
2.	MME-402	Introduction to Manufacturing Processes	2	1	-	3	-	3
3.	MTH-404	Numerical Methods and Computer Programming	2	2	-	4	-	4
	MTH-405 P	Laboratory Practice in Numerical Methods and Computer Programming	-	-	2	-	1	1
4.	MEC-412	Heat Transfer and Fluid Flow	2	1	-	3	-	3
	MEC-413 P	Laboratory Practice in Heat Transfer and Fluid Flow	-	-	2	-	1	1
5.	ECE-405	Electronics & Metallurgical Industrial Instrumentation	2		-	2	-	2
	ECE-406 P	Laboratory Practice in Electronics & Metallurgical Industrial Instrumentation	-	-	2	-	1	1
6.	HSS-402	Industrial Economics and Management	2	2	-	4	-	4
		TOTAL	13	8	6	21	3	24

L – Lecture T – Tutorial P – Practical TH – Theory

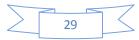

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-401	Course Title: Thermodynamics of Materials		
2. Contact Hours : L: 3; T	: 2; P: 0		
3. Examination Duration (Hrs):	Theory: 0 3	Practical: 0 0	
4. Relative Weightage: M-I: 2 0	M-II: 2 0 ASN	M : 1 0 ME: 5 0 PRE: 0 0	
5. Credits: 0 5 4 th Se	mester: Autumn	√ Spring	

6. Objective: To comprehend the laws of thermodynamics and their applications to metallurgical systems.

S. No.	Particulars	Contact Hours
1.	Introduction: Basic concepts, postulates, and basic problems of thermodynamics. Reversible and irreversible reactions. First law of thermodynamics: Enthalpy. Heat capacity.	10
2.	Thermo-chemistry. Hessøs law. Flame temperature. Second law of Thermodynamics: Entropy and its change, Carnot cycle. Free energy and Gibbøs Helmholtz equation. Third law. Fugacity, activity and equilibrium constant. Free energy calculations. Activity measurement. Ellingham diagram. Richardson diagram. Solutions: Introduction ó Le Chatelier principle. Partial molal quantities. Gibbøs Duham equation. Ideal, non-ideal and dilute solutions. Raoultøs and Henryøs laws. Alternative/standard states. Sievertsø law, mixing excess functions.	20
3.	Regular solutions. Classius-Clapeyron equation. Phase rule: liquid- vapour, solid-liquid, solid-vapour equilibria, Troutonøs rule. The thermodynamics of electro-chemical reversible cells. Introduction to statistical thermodynamics. Thermodynamics of inter phases.	12
	Total	42

S. No.	Name of the Book	Author(s)	Publisher	Year of Publications
1.	Physical Chemistry of Metals	Darken & Gurry	CBS	2002
2.	Physical Chemistry of Iron and Steel making	C. Bodsworth	English Longmanøs Books Society & Longmanøs Green & Company	1972
3.	Introduction to Metallurgical Thermodynamics	David R Gaskell	McGraw-Hill	1995
4.	Problems in Metallurgical Thermodynamics & Kinetics	G.S Upadhyaye & R.K Dubey	Pergamum Press	1985
5.	Principles of Extractive Metallurgy	Rosenquist	McGraw-Hill	1983
6.	Phy. Chemistry of Met. Processes	A.K. Biswas and G.R. Bashforth	Asia Publishing House, New Delhi	2005
7.	Text Book of Materials and Metallurgical Thermodynamics	Ahindra Ghosh	PHI	2003



NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-402	Course Title:	Introduction	n to Manuf	acturin	g Proce	esses	
2. Contact Hours: L: 2;	T: 1;	P: 0					
3. Examination Duration (Hrs)	: Theory:	03	Practical:	0 0			
4. Relative Weightage: M-I: 2	0 M-II :	2 0 ASN	A : 1 0	ME:	5 0	PRE:	0 0
5. Credits: 0 3 4 ^{tt}	¹ Semester:		\checkmark				
		Autumn	Spring				

6. Objective: To provide the fundamentals of knowledge about various manufacturing processes.

S. No.	Particulars	Contact Hours
1.	Historical perspective of manufacturing process, classification of Manufacturing processes, their advantages and disadvantages.	08
2.	Machining, casting, metal forming, powder metallurgy, Joining methods, important methods of each manufacturing process	26
3.	Plastic part manufacturing methods, injection moulding, blow moulding, compression moulding and transfer moulding.	04
4.	Thermoforming, rapid proto typing etc.	04
	Total	42

S. No.	Name of the Books/Publisher	Author	Publisher	Year of Publications
1.	Forging & forming metals	S.E.Rusinoff	D.B. Taraporevala	1969
2.	Theory of Metal forming & Metal Cutting	S.K.Sinha S.C.Prasad	Dhanpat Rai	1995
3.	Mechanical Metallurgy	G.E.Dieter	McGraw Hill	1988
4.	Manufacturing Processes for Engineering materials	Kalpakjian & Schmid	Pearson Education	2001
5.	Manufacturing Processes	B.H Amstead, Ostwald, Begeman	John Wiley & Sons	1976
6.	Process & Materials Of Manufacturing	Roy A Lindberg	PHI	1977

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MTH-404 C		Numerical N programmin	Methods and Computer
2. Contact Hours:	L: 2;	T:1;	P: 0
3. Examination Duration (Hrs):	Theory:	0 3	Practical: 0 0
4. Relative Weightage: M-I: 2	0 M-II :	2 0 ASM	I: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 4 ^t	^h Semester:	Autumn	√ Spring

6. Objective: To learn the principles of numerical solutions of equations and computer programming.

S. No.	Particulars	Contact Hours
1.	NUMERICAL METHODS: Finite Differences: Difference table and its usage. The difference operators , and the operator E.	02
2.	Interpolation: Interpolation with equal intervals. Newtonøs advancing difference formula. Newtonøs backward differences formula. Interpolation with unequal intervals. Newtonøs divided differences formula. Lagrangeøs interpolation formula. Spline functions.	05
3.	Central Differences: The central difference operator $\$ and the averaging operator μ , Relations between these operators. Gauss forward and backward interpolation formula, Sterling, Besseløs Laplace and Everettøs formulae.	06
4.	Numerical Solution of Algebraic and Transcendental Equations. Graphic Method, Regula - Falsi Method, Balzanoøs Bisection Method, Newton - Raphson Method and its geometrical significance.	06
5.	Numerical Integration: Numerical integration. General Quadrature Formula, Trapezoidal rule. Simpsonøs one-third and three-eight rules, Weddleøs rule, Hardyøs rule.	06
6.	Numerical solution of ordinary differential equations. Numerical solution of ordinary differential equations, Picardøs method, Taylorøs series methods, Eulerøs method, Runge-Kutta method.	04

7.	 COMPUTER PROGRAMMING: The application of Computer, Digital computer organization. Flow charts and decision tables. FORTRAN programming preliminaries. Fortran integer and real constants. Fortran variables and the names of variables. Fortran operations and expressions for addition, subtraction, multiplication, division and exponentiation. Mathematical functions. Arithmetic statements. Input-output statements. Format free statements. Simple computer programmes. Transfer of control: Control statements. The GoTo statements. The arithmetic IF statement. The logical IF statement. Relational operators. Elementary format specifications. Format description for PUNCH statement. The Do statement. Examples. C⁺⁺ programming, simulation and modelling, Computing methods in Engineering problem solving in general and Metallurgical Engineering. Problem in particular, working principal of genetic algorithm, artificial neural networking, fuzzy logic techniques, soft computing technique like fuzzy regression, fuzzy neuron nets etc. 	07
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Numerical Analysis for Scientists and Engineering	M.K Jain	New Age International (P) Ltd.	1997
2.	Mathematical numerical analysis	S.C. Scarborough.	Oxford & IBH Publishing Co.	1966
3.	Numerical methods, software and analysis	John R Rice	McGraw-Hill	1985
4.	Numerical Methods in Science and Engineering.	S. Rajasekaran	S. Chan	2003

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MTH-405P	Course Tit	le: Laborator	y Practice in Numerical
		Methods a	and Computer programming
2. Contact Hours: L: 0;	T: 0;	P: 2	
3. Examination Duration (Hrs):	: Theory:	0 0	Practical: 0 2
4. Relative Weightage: MS	LE: 2 5	ESLE:	2 5
5. Credits: 0 1 4 th	Semester:		\checkmark
		Autumn	Spring

6. Objective: To provide basic knowledge about the problem formulation and writing of computer programs to solve the same.

7. List of Experiments:

S. No.	Particulars
1.	Given a set of N numbers A_1 , A_2 , A_{3i} , A_N , to write a program and arrange them in an ascending sequence.
2.	To draw a flow chart and to write a Computer Program to compute the Scalar Product of two vectors X and Y given by Scalar Product X_iY_i where the quantities X_i, Y_i (i=1, 2,15) are known.
3.	To write a Program and then compute the roots of the quadratic equation $Ax^2 + Bx + C=0$ for different values of A, B and C.
4.	The formula for computing standard deviation() of normal distribution is where x_i represents an individual number of group numbers, x^- the arithmetic mean of the group of numbers, and N the size of group of numbers. Draw a flow chart and compute the standard deviation of a given set of 500 numbers x_i, x_2, \dots, x_{500} .
5.	Program to find a real root of $F(x) = 0$ by Newton Raphson Method.
L	33

6.	Program to evaluate the integral of $F(x)$ between limits A and B using Simpson and Trapezoidal rule
7.	Program to solve an ordinary differential equation $dy / dx = f(x,y)$ using Euler method.
8.	Program to compute the solution of dy / dx = $f(x,y)$, $y(x_0) = y_0$ using the classical Runge - Kutta Fourth order method.
9.	To write a program to compute and print the values of the safe loading S for $R = 25(25)250$ where
	$S = 17,000 - 0.485 R^2$ for $R < 120$
	$18,000/1 + R^2/18,000$ for $R > 120$

NAME OF DEPARTMENT : Metallurgical & Materials Engineering

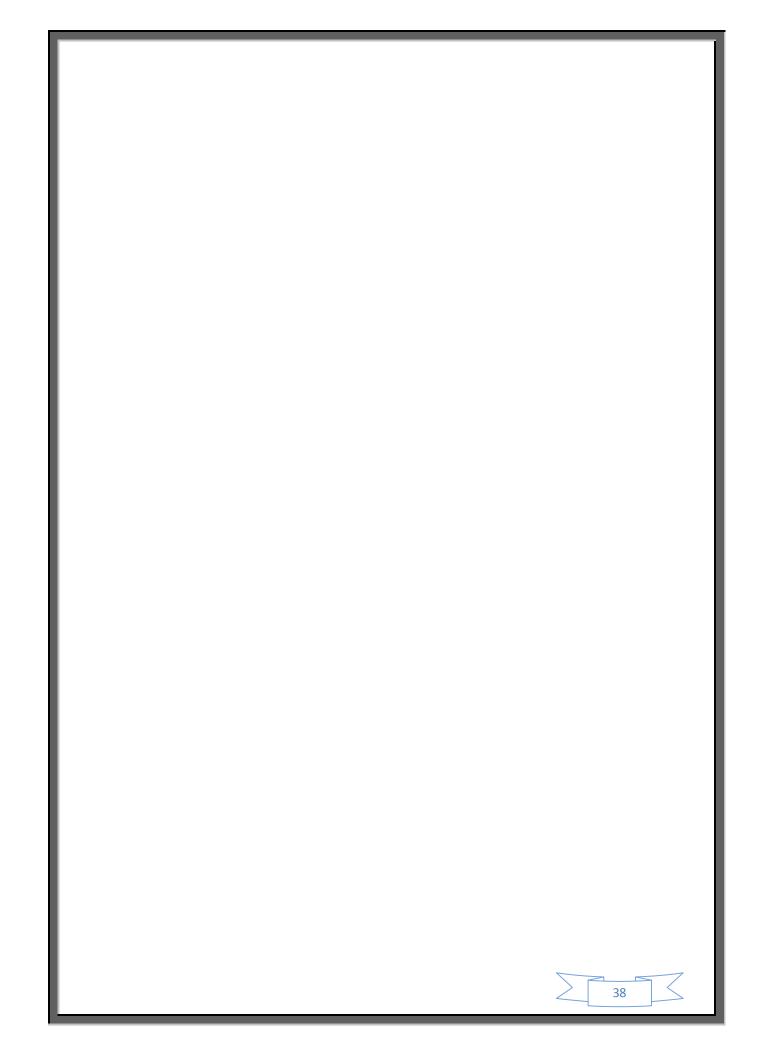
1. Subject Code: MEC-412	Course Title: Heat Transfer and Fluid Flow
2. Contact Hours: L: 2;	T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2 0	M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: $0 3 4^{\text{th}}$	Semester: V Autumn Spring

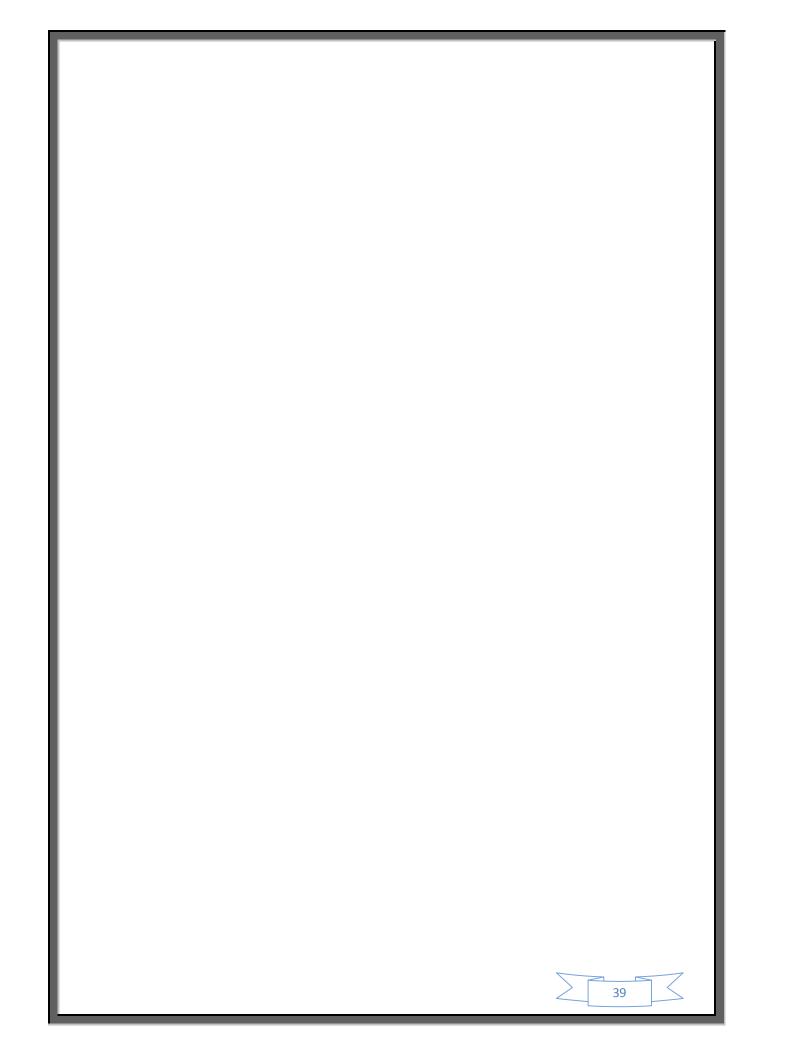
6. Objective: To understand the basic principles of heat transfer and fluid flow.

S. No.	Particulars	Contact Hours
1.	Modes and Laws of heat transfer.	10
	CONDUCTION: Steady State and unsteady state. Heat flow	
	through composite walls. Heating and cooling of plates,	
	cylinders and spheres.	
	CONVECTION: Free and forced convection. Reynolds,	
	Crasshoofs, Nusselt and Station numbers.	
2.		16
	RADIATION: Emissivity, absorptivity, reflectivity and transmissivity. Simple Heat transfer between black and gray surfaces. Re-radiating surfaces. Heat losses from furnaces. Combined effects of conduction, convection and radiation. Steady and unsteady heat flow in some metallurgical processes, e.g melting, solidification, heating/cooling of ingots and billets,	
3.	etc.	16
	FLUID FLOW: Viscosity and Newtonøs law of viscosity. Newtonian and non-Newtonian fluids. Conservation of mass and continuity equation. Energy of fluids. Eulerøs and Bernoulli's equations. Loss of energy due to friction. Flow through pipes. Laminar and Turbulent Flow, Reynoldøs number. Compressed air and air blasts. Energy used for compression. Compressor and blower efficiency characteristics.	
	Total	42

S. No.	Name of the Book	Author(s)	Publisher	Year of Publications
1.	Engineering Heat Transfer	Gupta & Prakash	Nem Chan & Bros.	1976
2.	A Text on Heat transfer	S.P. Sukjhatme	Universities Press (India)Pvt. Ltd	2005
3.	Heat transfer	Holman	McGraw- Hill	1976
4.	Heat transfer	Domkundwar	Dhanpat Rai Publishing Company (P) Ltd.	2005
5.	Fluid Mechanics	Khurmi	S. Chan & company	1987

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: MEC-413P	Course Ti	t le: Laborator Fluid Flo	ry Practice in Heat Transfer and
2. Contact Hours : L: 0;	T: 0;	P: 2	
3. Examination Duration (Hrs):	Theory:	0 0 P	Practical: 0 2
4. Relative Weightage: MSLE:	2 5	ESLE: 2	5
5. Credits: $0 1 4^{\text{th}} S$	Semester:		\checkmark
	Α	utumn	Spring


6. Objective: To familiarize with the conduct of basic experiments to evaluate the relevant properties.

7. List of Experiments:

S. No.	Experiments
1.	To find the thermal conductivity of a liquid by the guarded hot plate method.
2.	To determine the thermal conductivity of good conductor of heat (metal rod).
3.	Heat transfer through a composite wall.
4.	Heat transfer in forced convection.
5.	To determine Stefan - Boltzmannøs constant of radiation heat transfer.
6.	Emissivity measurement apparatus.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: ECE-405	Course Title: Electroni Industria	ics and Metallurgical al Instrumentation
2. Contact Hours: L: 2;	T: 0; P: 0	
3. Examination Duration (Hrs):	Theory: 0 3	Practical: 0 0
4. Relative Weightage: M-I: 2 0	M-II: 2 0 ASM	1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 2 4 th Ser	mester: [√ Spring

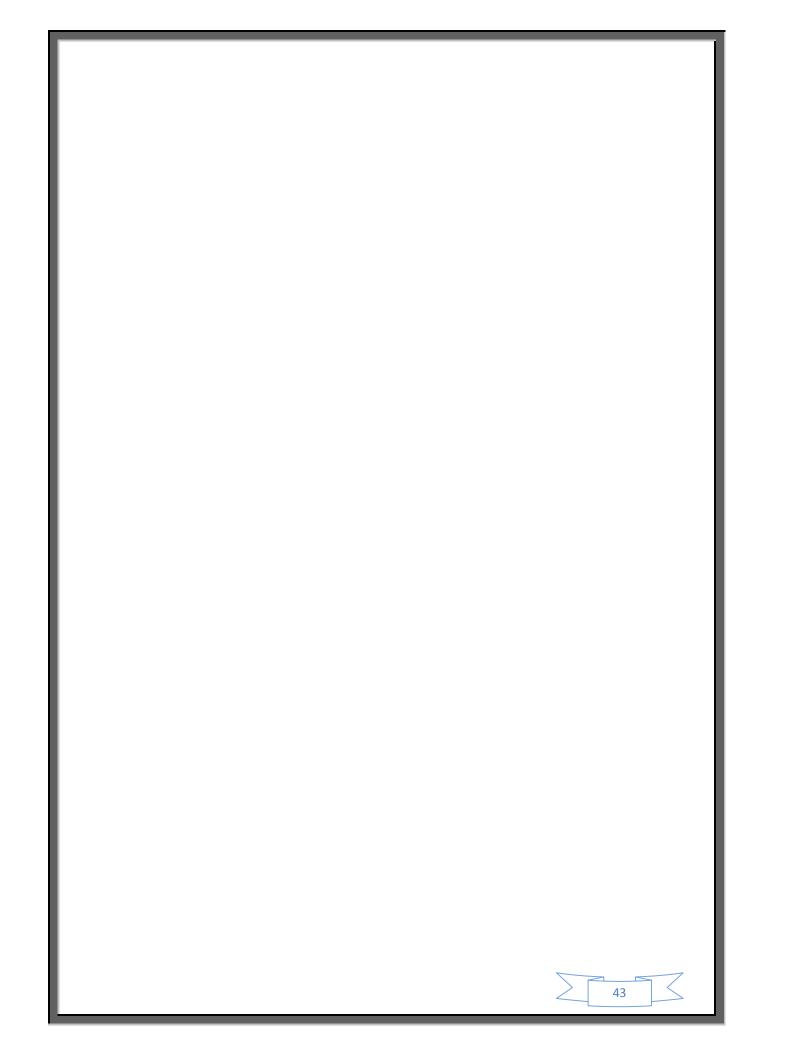
6. Objective: To gain knowledge about the basics of electronics, and to familiarize with the working principles of metallurgical industrial electronic instruments.

7. Details of the Course:

S. No.	Particulars	Contact Hours		
1.	Construction, symbol and characteristics of semiconductors diodes, transistors and silicon-controlled rectifiers. Rectifiers and invertors.			
	Motor control.			
2.	Induction and dielectric heating. Electric arc furnaces and their accessories. Ultrasonic waves and their applications. Pulse, digital	15		
	and switching circuits and systems. Transducers.			
3.	Measurements of current, voltage, power and energy. Cathode-ray	10		
4.	oscilloscope and its applications. Temperature control, gas flow and fluid flow controls, PID, load cells, and strain gauge etc.	04		
	Total	42		

S. No.	Name of the Book	Author(s)	Publisher	Year of Publications
1.	Pulse Digital and Switching Wave Form	Millman & Taub.	Tata McGraw - Hill	2007
2.	Integrated Electronics	Millman & Halkais.	McGraw- Hill	1972

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: ECE-406P		atory Practice in Electronics and lurgical Industrial Instrumentation
2. Contact Hours : L: 0;	T: 0; P: 2	largical industrial instrumentation
3. Examination Duration (Hrs):	Theory: 0 0	Practical: 0 2
4. Relative Weightage: MSLE:	2 5 ESLE:	2 5
5. Credits: 0 1 4 th	Semester:	\checkmark
	Autumn	Spring

6. Objective: To become familiar with the working of relevant electronic devices.

7. List of Experiments:

S. No.	Experiments
1.	Diode & Zener diode characteristics.
2.	Common emitter configuration D.C characteristics and amplifier.
3.	Emitter follower and common basic amplifier.
4.	To assemble a two stage cascaded amplifier and study its performance.
5.	Differential amplifier.
6.	Feedback amplifiers, current series and current shunt.
7.	RC phase shift oscillator.
8.	Basic logic gates.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: HSS-402	Course Tit	le: Industria	al Economics &	Management	
2. Contact Hours: L: 2;	T: 2;	P: 0			
3. Examination Duration (Hrs):	Theory:	0 3	Practical: 0	0	
4. Relative Weightage: M-I: 2 0	M-II :	2 0 ASM	I: 1 0 ME:	5 0 PRE:	0 0
5. Credits: 0 4 4 th S	Semester:	Autumn	√ Spring		

6. Objective: To gain knowledge about the concepts involved in industrial economics and management.

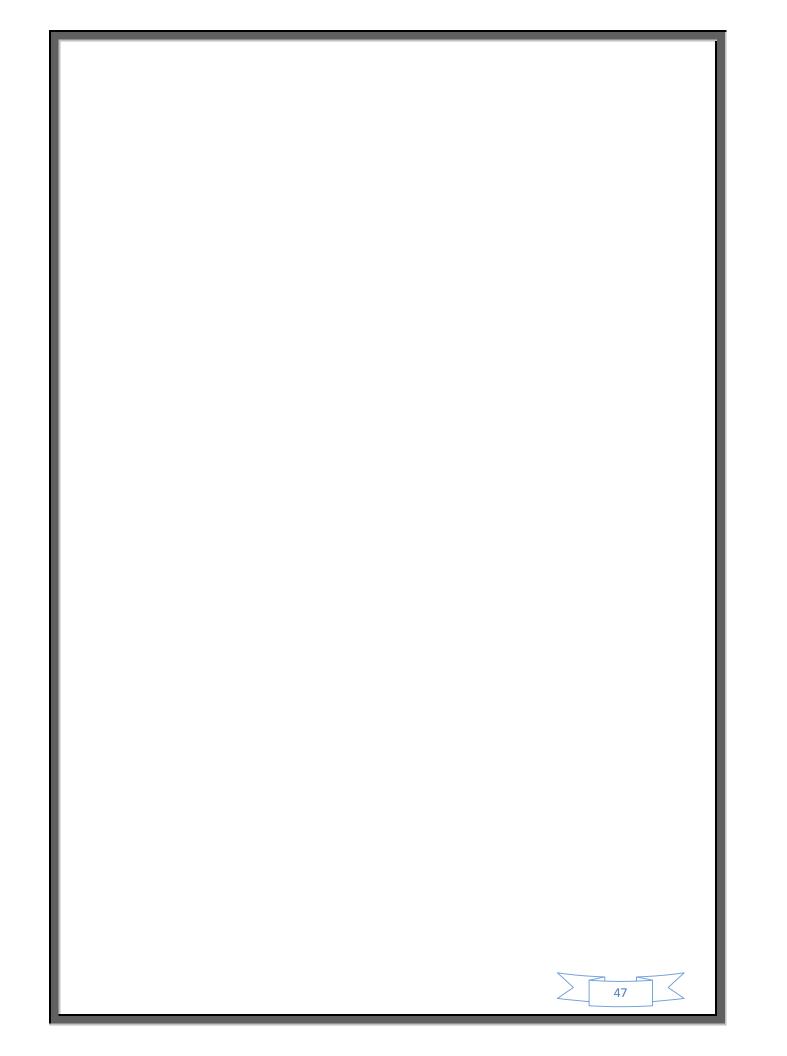
7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	INDUSTRY: Introduction to industry, Industrialisation, Benefits of industrialisation. Economics and social effects of industrialisation. MANAGEMENT: Meaning of management, functions and principles of management, industrial change and development.	08
2.	MANAGEMENT OBJECTIVES: Defining management objectives, Testing of objectives, Primary, secondary and social objectives of management.	07
3.	PERSONNEL MANAGEMENT: Importance of personnel management. Main functions of personnel department. Selection, training and placement of manpower resources. ECONOMIC SCIENCE: Division of economics and development of economic life	09
5.	CONSUMPTION: Nature of human wants and their satisfaction - utility, law of diminishing marginal utility, Law of demand and supply, elasticity of demand.	06 07
6.	PRICE DETERMINATION: Concept of markets, - competent and monopoly markets - price and output determination under perfect competition and monopoly.	05
	PRODUCTION: Meaning of production, production function, laws of production.	
	Total	42

44

S. No.	Name of the Books/Publisher	Author(s)	Publisher	Year of Publications
1.	Elementary Economic theory	K.K. Dewett and JD. Verma	Premium Pub. Co.	1964
2.	Indian Economics	K.K. Dewett & J.D.Verma	S. Chan	1971
		M.L. Seth		
3.	Introduction to Economics	George Terry	L.N.Agarwal	1964
4.	Principles of Management		R.D.Irwin	1977

METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR


SEMESTER WISE COURSE STRUCTURE

B. Tech. 5th Semester

S.	COURSE NO.	TITLE / SUBJECT	ENG	ENGAGEMENT		(C R E D I T		
NO.			L	Т	Р	TH.	Р	TOTAL	
1.	MME-501	Thermodynamics and Kinetics of	3	1	-	4	-	4	
		Metallurgical Processes							
	MME-501 P	Laboratory Practice in							
		Thermodynamics and Kinetics of			2	-	1	1	
		Metallurgical Processes							
2.	MME-502	Minerals Processing	2	1	-	3	-	3	
	MME-502 P	Laboratory Practice in Minerals	-	-	2	-	1	1	
		Processing							
3.	MME-503	Metallography	2	1	-	3	-	3	
	MME-503 P	Laboratory Practice in	-	-	2		1	1	
		Metallography							
4.	MME-504	Fuels, Furnaces and Refractories	3	1	-	4	-	4	
	MME-504 P	Laboratory Practice in	-	-	2	-	1	1	
		Fuels, Furnaces and Refractories							
5.	MME-505	Electronic, Magnetic and	2	2	-	4	-	4	
		Dielectric Materials							
6.	MME-506	Principles of Metal	2	1	-	3	-	3	
		Extraction & Refining Processes							
		TOTAL	14	7	8	21	4	25	

L – Lecture T – Tutorial P – Practical TH – Theory

46

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-501		odynamics & Kinetics of urgical Processes
2. Contact Hours: L: 3 ;	T: 1 ;	P: 0
3. Examination Duration (Hrs):	Theory: 0 3	Practical: 0 0
4. Relative Weightage: M-I: 2	0 M-II: 2 0 ASM	$\mathbf{M}: \begin{array}{c c} 1 & 0 \end{array} \mathbf{ME}: \begin{array}{c c} 5 & 0 \end{array} \mathbf{PRE}: \begin{array}{c c} 0 & 0 \end{array}$
5. Credits: 0 4 5 th 5	Semester: 🗸	
	Autumn	Spring

6. Objective: To provide an understanding of the thermodynamic principles and kinetics pertaining to the metallurgical processes/systems.

7. Details of the Course:

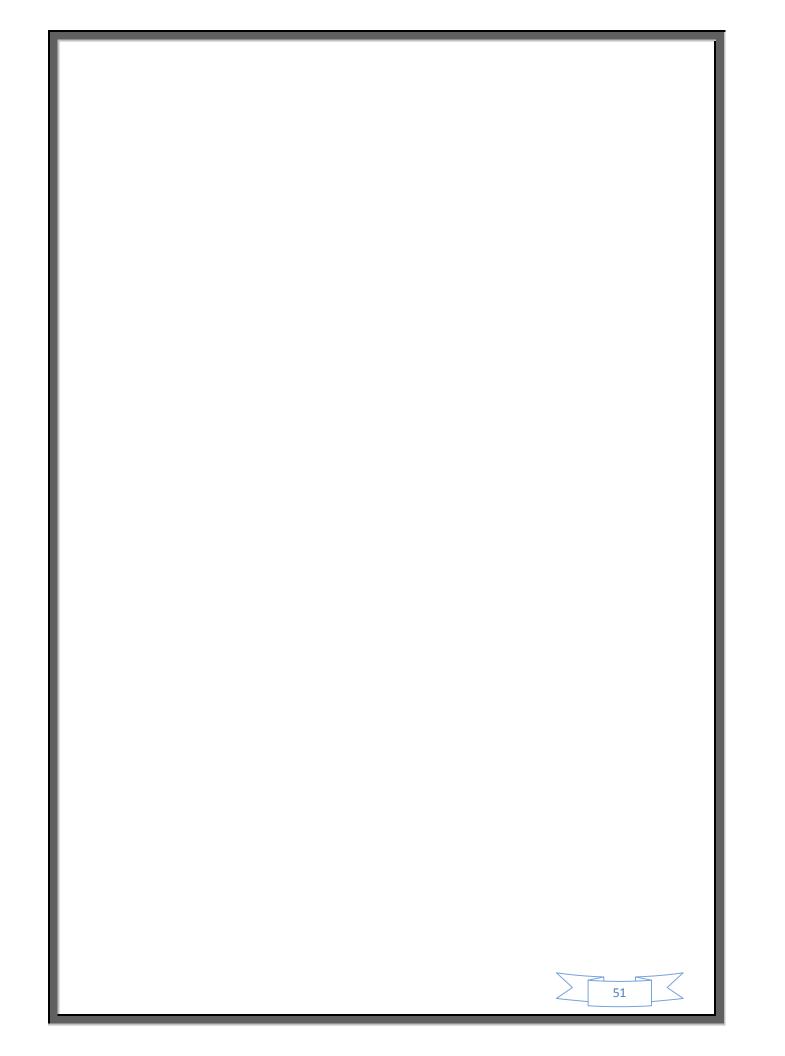
S. No.	Particulars	Contact Hours
1.	Brief review of generalized systems, solutions and laws/ postulates.	02
2.	Statistical thermodynamics, thermodynamics of interfaces. Phase rule, liquid-vapour, solid-vapour, solid liquid and solid-solid equilibria, heterogeneous equilibria. Equilibrium and temperature- pressure diagrams, their applications to various metallurgical systems.	10
3.	Chemical kinetics and its related laws, theories of reaction rates, reaction mechanism, kinetics of important metallurgical	08
4.	processes. Concept of activated state and activated energy. Diffusion in solids, Fickøs laws and Kirkendal effect. Diffusion in direct/indirect reduction and agglomeration processes. Kinetics of heterogeneous metallurgical operations: viz Gas-solid, slag metal, and other such systems. Kinetics of solid state transformations. Mass transfer in solid, liquid and gaseous systems.	22
	Total	42

48

S. No.	Name of the Book	Author(s)	Publisher	Year of Publications
1.	Physical Chemistry of Metals	Darken and Gurry	CBS	2002
2.	Thermodynamics of Materials	David V Ragone	John Wiley & Sons, Inc.	1995
3.	Thermodynamics	Partington	London Constable	1987
4.	Chemical Kinetics.	Laidller	Paperback	2008
5.	Thermodynamics for Chemists	Glasstone	EWP	1988
6.	Theory of Rare process	Glasstone, Laidller and Evring	Elsevier Science B.V.	1975
7.	Thermodynamics of Solids	R.A. Swalin	John Wiley Sons Inc.	1966
8.	Metallurgical Thermochemistry	Kubaschewski	Pergamum	1993
9.	Introduction to Chemical Metallurgy	R.A. Parker.	Pergamum press, NY	1978
10.	Chemical Metallurgy	J J Moore	Heinemann Ltd.	1990
	•			

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-501P
 Course Title: Laboratory Practice in Thermodynamics & Kinetics of Metallurgical Processes


2. Contact H	ours: L:0 ;		T: 0;		P: 2
3. Examinati	ion Duration ((Hrs):	Theory:	0 0	Practical: 0 2
4. Relative V	Veightage: MS	SLE:	2 5		ESLE : 2 5
5. Credits:	0 1	5 th	Semester:	\checkmark	
				Autumn	Spring

6. Objective : To familiarize with the conduct of different experimental studies.

7. List of Experiments

S. No.	Experiments
1.	Determination of Specific Heat by Bomb calorimeter (Adiabatic).
2.	Determination of Specific Calorimetry (Isothermal).
3.	Measurement of Partial Moral Volume.
4.	Study of Thermo - Analytical Techniques of Dissociation of Carbonates.
5.	To study the calcination of CaCO ₃ and calculate the percentage decomposition by varying time and temperature.
6.	To study the effect of time and temperature on the kinetics of roasting of CuS.
7.	To study the cementation process for extraction of copper from $CuSO_4$ bath with iron.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-502Course Title: Mineral Processing
2. Contact Hours: L: 2; T: 1; P: 0
3. Examination Duration (Hrs): Theory: 0 3 Practical: 0 0
4. Relative Weightage M-I : 2 0 M-II : 2 0 ASM : 1 0 ME : 5 0 PRE : 0 0
5. Credits: $0 3$ 5 th Semester: $$

52

AutumnSpring6. Objective: To familiarize with the processing of ores and to extract valuable minerals.

7.Details of the Course:

S. No.	Particulars	Contact Hours
1. 2.	Location of principal ore bodies and extracting plants. Indian Mineral resources and metallurgical industries. Estimated tonnage of metals produced /imported /exported by India. Purpose of Mineral Dressing, scope and limitation of available methods. Classification of ores.	05
3.	Communition units like jaw crusher gyratory, cone crusher, Roll and impact crusher, attritor and other grinding units, their performance, applications and limiting reduction ratio. Sizing and classification. Methods of sizing, both Laboratory and Industrial. Various types of screens. Classification as a means of sizing. Laws of classification.	10
	Types of classification. Filtration and Thickening. Gravity concentration process. Jigging, bedding, types of jigs, shaking- tables, riffled, tables and tilting tables and vanners. Their performance and applications heavy media separation. Flotation: Its physico-chemical principles. Flotation reagents. Flotation machines flotation as used for concentration of copper, lead zinc and their complex ores. Miscellaneous methods of concentration, Electro- static and Magnetic methods of separation. Dewatering, filtering, amalgamation and thermal processes. Benefaction of coals and iron ores, washing methods, Case studies.	27
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Powder Metallurgy and Particulate Materials Processes	German R.M	Metal powder industries federation	2005
2.	Mineral Processing Technology	Wills B.A.	Pergamon Press.	1992
3.	Principles of Mineral Processing	Gaudin P.M.,	Tata McGraw Hill.	1987
4.	Elements of ore dressing	A.F.Taggart	John Wiley	1951
5.	Unit operations	Meab and Smith	McGraw Hill	1997

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-502P	Course Title: Laboratory Practice in Mineral Processing
2. Contact Hours : L:0; T: 0;	P: 2
3. Examination Duration (Hrs): Theory	y: 0 3 Practical : 0 0
4. Relative Weightage: MSLE: 2 5	ESLE: 2 5
5. Credits: 0 1 5 th Semester	
	Autumn Spring

 Autumn
 Spring

 6. Objective: To provide understanding of the basic construction, and principles of working different mineral processing equipments.

7. List of Experiments

and2.To3.settUsefrac4.witTo5.caleplo6.To7.grinCon8.a) SCon9.Flo10.	study the parts of a Jaw Crusher and to operate it using different ore materials l various gape settings, and determine the reduction ratios. study the size reduction of an ore by a roll crusher using different roll tings. e a laboratory ball mill to reduce a given crushed ore to a - 200 μm size ction using different milling times and changing the weight of the grinding dium. Make energy calculations. Compare the energy efficiency of attritor h ball mill. perform Sieve Analysis on a given dry milled Ore for 1/2, 1 and 2 hrs and to culate i) percentage loss in screening, ii) the average size of particles and iii) t various sizing curves. study the effect of any one of the following grinding variables on the formance of the ball mill or rod mill; i) Ball load or rod load ii) time of nding. nduct the Classification of a mill product using Spiral Classifier b) A Cyclone.
 To sett Use frac frac mee wit To cale plo To Sett use frac frac	study the size reduction of an ore by a roll crusher using different roll tings. e a laboratory ball mill to reduce a given crushed ore to a - 200 μ m size ction using different milling times and changing the weight of the grinding dium. Make energy calculations. Compare the energy efficiency of attritor h ball mill. perform Sieve Analysis on a given dry milled Ore for 1/2, 1 and 2 hrs and to culate i) percentage loss in screening, ii) the average size of particles and iii) t various sizing curves. study the effect of any one of the following grinding variables on the formance of the ball mill or rod mill; i) Ball load or rod load ii) time of nding. nduct the Classification of a mill product using
 3. sett Use frac 4. mee wit To 5. cale plo 6. To 6. To 7. grin Con 8. a) S 9. Flo 10. Con 	tings. e a laboratory ball mill to reduce a given crushed ore to a - 200 μ m size ction using different milling times and changing the weight of the grinding dium. Make energy calculations. Compare the energy efficiency of attritor h ball mill. perform Sieve Analysis on a given dry milled Ore for 1/2, 1 and 2 hrs and to culate i) percentage loss in screening, ii) the average size of particles and iii) t various sizing curves. study the effect of any one of the following grinding variables on the formance of the ball mill or rod mill; i) Ball load or rod load ii) time of nding. nduct the Classification of a mill product using
4. Use frac wit To 5. cale plo 6. To per 7. grin Con 8. a) S Con 9. Flo 10. Con	e a laboratory ball mill to reduce a given crushed ore to a - 200 μ m size ction using different milling times and changing the weight of the grinding dium. Make energy calculations. Compare the energy efficiency of attritor h ball mill. perform Sieve Analysis on a given dry milled Ore for 1/2, 1 and 2 hrs and to culate i) percentage loss in screening, ii) the average size of particles and iii) t various sizing curves. study the effect of any one of the following grinding variables on the formance of the ball mill or rod mill; i) Ball load or rod load ii) time of nding. nduct the Classification of a mill product using
5. cald plo 6. To per 7. grin Con 8. a) S Con 9. Flo 10. Con	culate i) percentage loss in screening, ii) the average size of particles and iii) t various sizing curves. study the effect of any one of the following grinding variables on the formance of the ball mill or rod mill; i) Ball load or rod load ii) time of nding. nduct the Classification of a mill product using
6. plo 6. To per 7. grin Con 8. a) S Con 9. Flo 10. Con	t various sizing curves. study the effect of any one of the following grinding variables on the formance of the ball mill or rod mill; i) Ball load or rod load ii) time of nding. nduct the Classification of a mill product using
 To per per 7. grin Con 8. a) \$ Con 9. Flo 10. Con 9. 	study the effect of any one of the following grinding variables on the formance of the ball mill or rod mill; i) Ball load or rod load ii) time of nding. nduct the Classification of a mill product using
7. grin Con 8. a) S Con 9. Flo 10. Con	nding. nduct the Classification of a mill product using
8. a) S Con 9. Flo 10. Con	nduct the Classification of a mill product using
8. a) S Con 9. Flo 10. Con	
9. Flo 10. Con	Spiral Classifier b) A Cyclone
9. Flo 10. Cor	Spiral Classifier 0/11 Cyclone.
10. Con	ncentrate a given Sulphide Ore (Chalcopyrite, Sphalarite, Galena) by Froth
	tation and list the reagents used.
	ncentrate a given Ore using: a) Shaking Tables b) Magnetic Separator, and
11. c)	Jigs.
Stu	dy of a) Hammer mill, and b) Impact mill.
12. Stu	dy the working of a) Screens, and b) Grilles
13. Stu	dy of a Thickener. Dewatering a given slurry by thickening. Determination of
Fin	es carried by thickener overflow.
Filt	tering a given slurry under normal gravity and using Vacuum Filtration.

Heavy media separation of Coal

NAME OF DEPARTMENT: Metallurgical & Materia	als Engineering
1. Subject Code:MME-503Course	Title: Metallography
2. Contact Hours : L: 2 ; T: 1; P:	0
3. Examination Duration (Hrs): Theory: 0 3	Practical: 0 0
4. Relative Weightage: M-I: 2 0 M-II: 2 0	ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: $0 3$ 5 th Semester: $$	Spring
6 Objective: To understand the basic principles of the	1 0

6. Objective: To understand the basic principles of the techniques used for the study of metal samples.

7.Details of the Course:

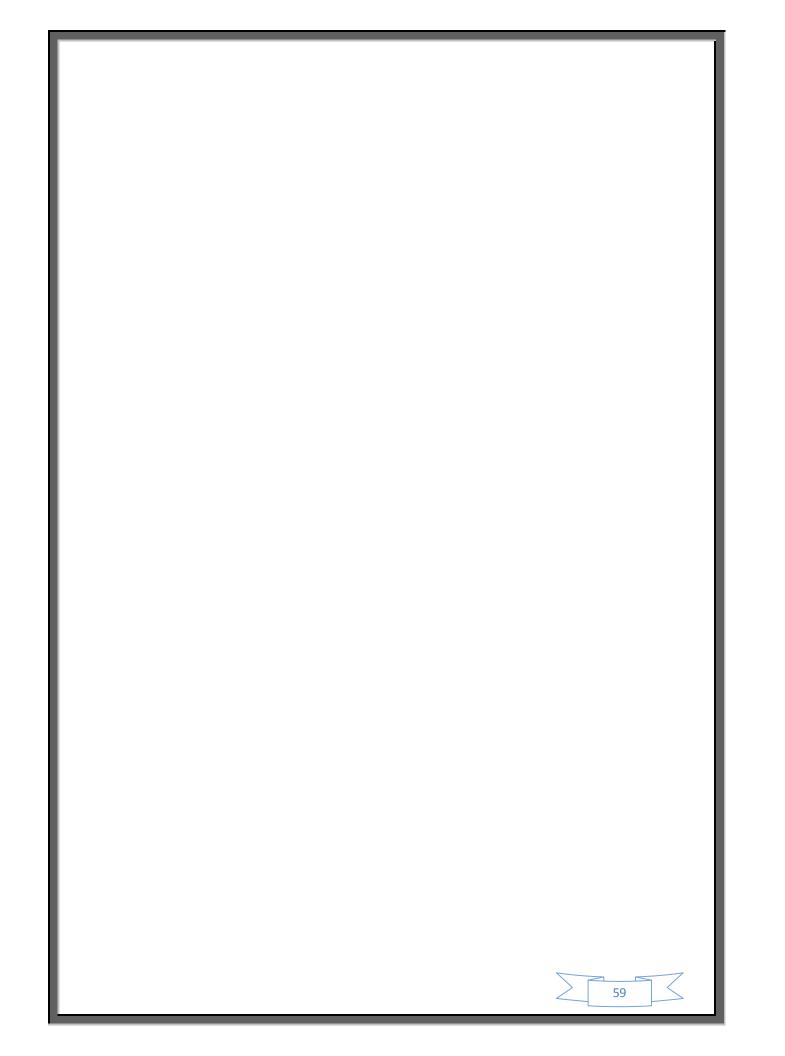
S. No.	Particulars	Contact Hours
1.	Macro and Micro examination of materials, principle of a Metallurgical microscope, microscopic objectives, chromatic and spherical abrasion, different types of objectives.	06
2.	Properties of objectives. Magnifying power, Numerical aperture, resolving power, curvature of field and vertical resolution. Oil immersion objectives. Eyepieces- Negative, amplifying eyepieces, measuring and reticle type. Low reflection coating. Types of Microscopes. Illuminating source, light collimators,	20
3.	rypes of Microscopes. Infinitiating source, light commators, cooling cells, light filters, diaphragms. Vertical illuminators, bright field and dark field illumination, prism and plan glass reflector, calcite prism, oblique illumination, conical stop illumination, critical Köhler illumination method of focussing, principles and techniques of photomicrography. Microscopy and Photomicrography with ultraviolet light. Microscopy with polarized light, principle of polarized light microscopy, equipment and technique. Principles of phase contrast microscopy and its application. Interferro-metry principles and equipment details, Use and techniques of structure of metals. Maintenance and care of optical parts. Metallography: Examination of samples by low and high power microscopy. Preparation of metallic samples for metallographic examinations (Micro and Macro) Quantitative Microscopy:- Estimation of grain size, size distribution of inclusions from measurements on a two dimensional section, Image analysis through computers.	16
	Total	42

56

S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	The principles of Metallographic practice	Kehl	McGraw Hill	1949
2.	Practical Metallography	Greeves and Wrighton	D.Van Nostrand Co.	1957
3.	Structural Metallurgy	Barreet	PHI/McGraw Hill	1979
4. 5.	Modern Microscopy Modern Metallographic Techniques and their Applications	V.E. Cosslett Phillips V A	McGraw Hill Wiley Eastern	1966 1971
6.	Metallography: Principle and practice	Vander Voort	McGraw Hill ASM	1984
7.	ASM Handbook, Volume	Whan R E (Ed)	international	1986
8.	10, Materials Characterisation Elements of X-ray Diffraction	Cullity B D	Prentice Hall, Inc	2001

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-503P			Course Title: Laboratory Practice in Metallography		
2. Contact Ho	ours: L:0	;	T: 0;	P: 2	wetanography
3. Examinatio	on Duration (I	Hrs):	Theory:	0 0	Practical: 0 2
4. Relative W	eightage: MS	LE: 2	5	ESLE: 2	5
5. Credits:	0 1	5 th 8	Semester:	\checkmark	


Autumn Spring

6. Objective: To familiarize with the preparation of metallographic specimens and to study macro and microstructures of different metal specimens.

7. List of Experiments

S. No.	Experiments
1.	Detailed study of a Metallurgical Microscope.
2.	Preparation of a standard specimen for microscopic examination.
3.	Electro-polishing of a given specimen.
4.	 Microstructure studies of the following: * Hypo- eutectoid, eutectoid and Hyper-eutectoid Steels. * Various types of cast irons. * Cu, Al, and their alloys. * HSS, Tool Steel, Stainless Steel, etc.
5.	To determine the average grain size by linear interception method.
6.	Study of Twining in Pb-Sn alloys under a Metallurgical microscope.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code:MME-504Course	e Title: Fuels ,Furnaces and Refractories
2. Contact Hours : L: 3; T: 1; P: 0	
3. Examination Duration (Hrs): Theory	: 0 3 Practical : 0 0
4. Relative Weightage: M-I: 2 0 M-II	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5. Credits: 0 3 5 th Semester:	\checkmark
	Autumn Spring

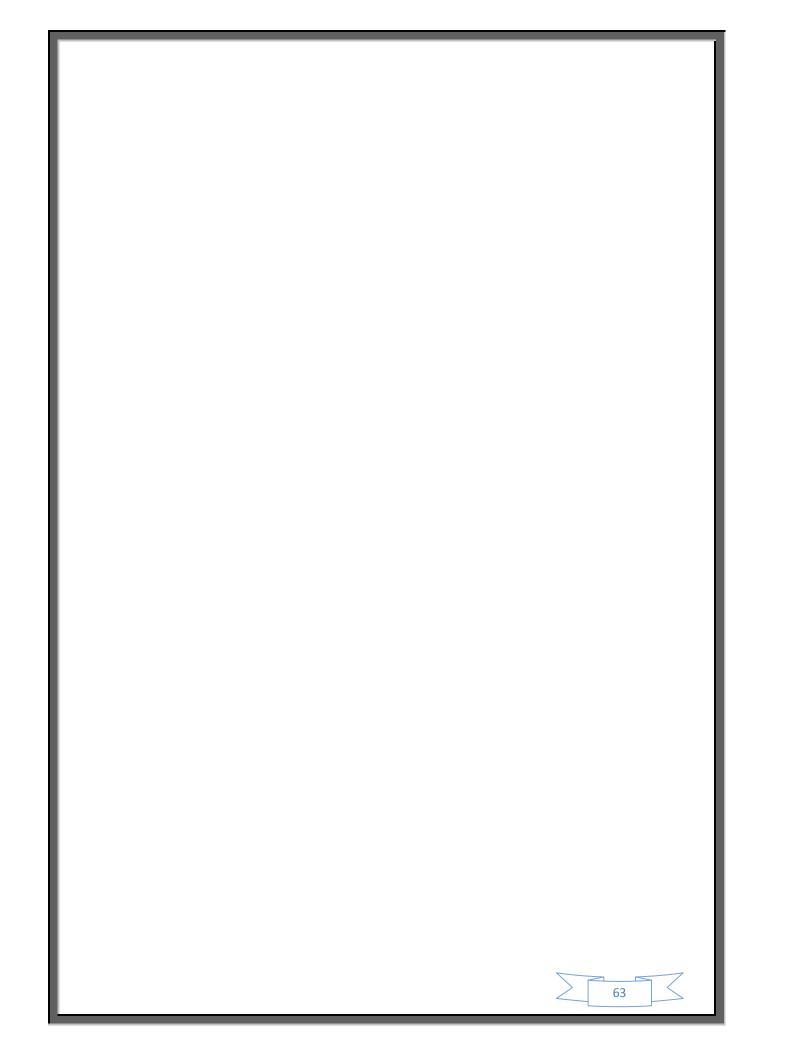
6. Objective: To familiarize with the various types of fuels, furnaces and refractories used in metallurgical engineering processes, and their importance.

7.Details of the Course:

S.No.	Particulars	Contact Hours
1.	REFRACTORIES: Their classifications, compositions, structures, properties and applications. Manufacture of Acid, Basic and Neutral Refractories. Special Refractories like Graphite, Zirconia, Thoria etc. Testing and Quality control of Refractories.	14
2.	FUELS: Their classifications and resources in India. Composition and Constitution of Coals. Metallurgical Coke and its properties and production. Gaseous and liquid fuels: Coal Gasification, Petroleum and its Refining, Coke Oven and Petroleum by-products. Combustion of fuels, Regenerators, Recuperators and their efficiencies. Newer sources of energy, testing of solids, liquids and gaseous fuels.	18
3.	FURNACES: Their classification. Elements of furnace construction. Batch type and continuous furnaces, fuel economy, heating and heat saving methods. Furnace design. Furnace temperatures and Furnace atmospheres and their control.	10
	Total	42

Name of the Books	Author(s)	Publisher	Year of Publications
Coal	Francis	Penguin	1967
Fuels .	Brame and King	ASTM, Philadelphia	1967
Refractories	Norton F.H	Tata McGraw Hill	1984
Refractories- production, properties and applications	Chesti A.R.	PHI	1986
Iron and Steel Production Vol. III	G.R. Bashforth	B.I Publication & Chapman & Hall	2000
Industrial furnaces	Trinks W.	John Wiley and Sons	2004 2004
Metallurgical engineering principles	Schuman	Weinheim, Germany	
Handbook of Refractories	D.N Nandi	Tata McGraw Hill	1987
Elements of Fuels Furnaces and Refractories	O.P.Gupta	Khanna Publications	1993
Refractories Production and Properties	Chester	IOM	1973
	Coal Fuels . Refractories Refractories- production, properties and applications Iron and Steel Production Vol. III Industrial furnaces Metallurgical engineering principles Handbook of Refractories Elements of Fuels Furnaces and Refractories Refractories Production and	CoalFrancisFuelsBrame and KingRefractoriesNorton F.HRefractories- production, properties and applicationsChesti A.R.Iron and Steel Production Vol. IIIG.R. BashforthIndustrial furnacesTrinks W.Metallurgical engineering principlesSchumanHandbook of RefractoriesD.N NandiElements of Fuels Furnaces and RefractoriesO.P.GuptaRefractories Production andChester	CoalFrancisPenguinFuelsBrame and KingASTM, PhiladelphiaRefractoriesNorton F.HTata McGraw HillRefractories- production, properties and applicationsChesti A.R.PHIIron and Steel Production Vol. IIIG.R. BashforthB.I Publication & Chapman & HallIndustrial furnacesTrinks W.John Wiley and SonsMetallurgical engineering principlesSchumanWeinheim, GermanyHandbook of RefractoriesD.N NandiTata McGraw HillElements of Fuels Furnaces and RefractoriesO.P.GuptaKhanna PublicationsRefractories Production andChesterIOM

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: MME-504P	Course Title : Laboratory Practice in Fuels Furnaces and Refractories
2. Contact Hours : L:0; T: 0;	P: 2
3. Examination Duration (Hrs): Theorem	ry: 0 0 Practical: 0 2
4. Relative Weightage: MSLE: 2 5	ESLE: 2 5
5. Credits: 0 1 5 th Semester:	\checkmark
	Autumn Spring

7. Objective: To analyse various fuels and to study different types of furnaces and refractories.

8.List of Experiments

S. No.	Experiments
1.	Determination of the Calorific Value of coal and fuel oil.
2.	Flame Temperature Measurement of a fuel oil.
3.	To determine the flash point of a given oil.
4.	To study the effect of temperature on viscosity of oil.
5.	To determine the Shatter Index of a Metallurgical coal.
6.	To determine the Bulk density measurement of a refractory material.
7. 8.	To carry out the Cone test of a Refractory brick.
9.	To study the construction of a simple muffle furnace.
	To determine the temperature profile of a furnace.
10.	To carry out the calibration of thermocouples (Pt-Rd, Chromel-Alumel).

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-	505 C	Course Title: Electronic, Magnetic and Dielectric Materials	
2. Contact Hours:	L:2 ;	T: 2; P: 0	
3. Examination Duration	n (Hrs): Theory:	Practical : 0 0	
4. Relative Weightage:	M-I : 2 0 M-II	II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0	
5. Credits: 0 4	5 th Semester:	√□AutumnSpring	

6. Objective: To familiarize with various electronic, magnetic and dielectric materials and to study their varied applications.

7.Details of the Course:

S.No.	Particulars	Contact Hours
1.	Free electron theory and its limitations, Metallic conduction and factors affecting conductivity, semi conductor materials and techniques of processing semi conductors. Oxidation, diffusion, ion and electron beam, ion implantation, plasma technology etc. MOS, MNOS and SOS etc. technologies, Gas I.C. technologies etc. Doping, Hall effects, p-n junctions etc. Ionic and super-ionic conduction,	15
2.	single crystal growth. Magnetic materials; dia, para, ferro, ferri, antiferro, ceramic magnetic materials. Magnetism, theory of magnetism, Hard and soft Magnetic materials, their classification and applications, technology of their production, precipitation hardening magnetic alloys, permanent magnetic materials.	10
3.	Di-electric materials, Piezo, and ferro electric materials, doping and electric breakdowns, ferrites, transformer and switching materials, Optical materials, lasers etc.	07
4.	 General discussion on the performance of materials in the development and growth of : Electrical , electronics and telecommunication equipment/ system, Energy sector, and Bio-Medical 	10
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Introduction to Solid State Physics	Kittel	Wiley	2004
2.	Physical Metallurgy Principles	Reed Hill	Affliliated East West Press Pvt Ltd.	2006
3.	Materials Science & Engineering	Raghvan, V	PHI	2008
4.	Theoretical Structural Metallurgy	Cottrell	Arnold	1962
5.	Structure and properties of materials, Vol. IV	Wulf Series	John Wiley	1966
6.	Semiconductors	Smith, R.A	Cambridge University Press	1986


NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-506	Course Title:	Principles of Metal Extraction and Refining Processes
2. Contact Hours: L: 2; T	Γ: 1; P: 0	Kenning Processes
3. Examination Duration (Hrs):	Theory: 0 3	Practical: 0 0
4. Relative Weightage: M-I: 2	0 M-II : 2 0 A	SM 1 0 ME: 5 0 PRE: 0 0
5. Credits: $0 3$ 5 th Se	emester: $$ Autumn	Spring
		$\sim \mathbf{F}^{\mathbf{B}}$

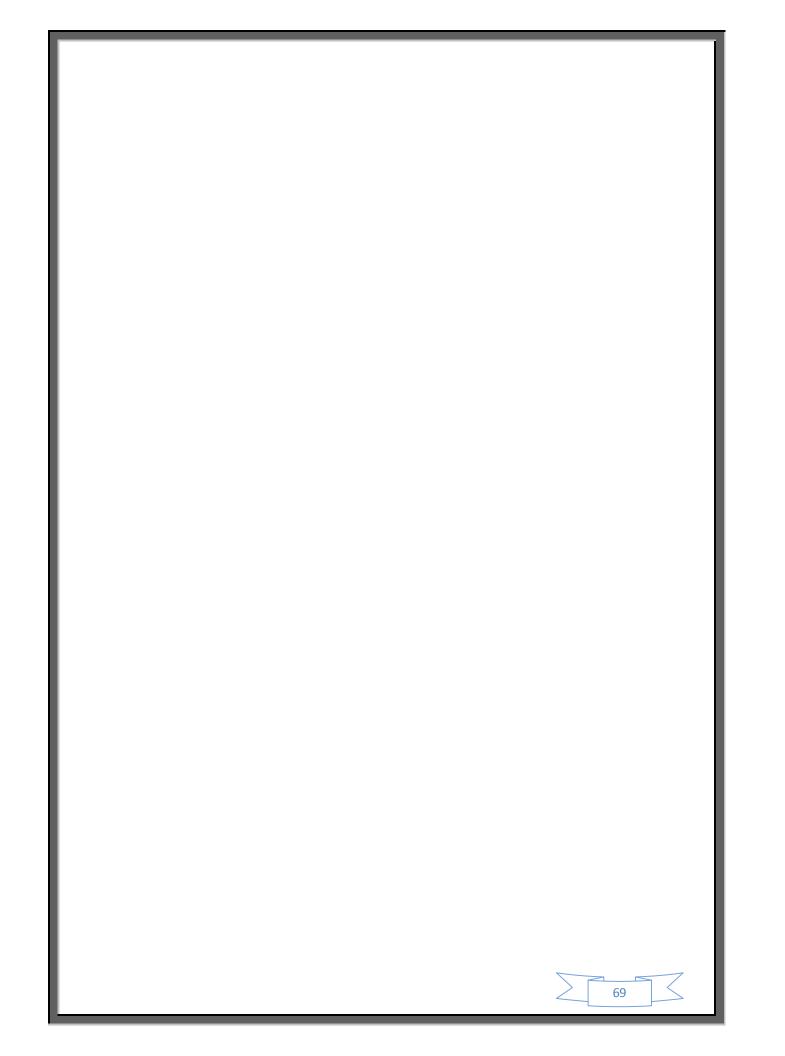
6. Objective : To familiarize with the fundamental principles of extraction and refining of metals from ores / concentrates.

7.Details of the Course:

S. No.	Particulars	Contact Hours
1.	Principles of Metallurgical Processes as applied to ores and concentrates for the extraction of metals: Importance of physico-	05
2.	chemical processes in metal extraction and refining. Roasting processes: drying and calcination, oxidizing, sulphatizing, chlorination, flourination and reducing roasting, Sintering and other agglomeration processes,	05
3.	Smelting processes: reducing, oxidizing electro-thermic, metallothermic and reaction smelting processes,	06
4.	Refining processes: liquefaction, fractional re-crystallization, distillation, oxidation, chlorination, Sulphidizing and carbon refining processes,	06
5.	Hydro-metallurgical processes: leaching, refining of leach solutions, recovery of metals; electrolytic and bacteria processes,	05
6.	Electro-metallurgical processes: Principles, advances, processes and applications of electro- refining, electrolytic cleaning, electropolishing, electro-forming, electroleaching, electromachining, etc. Regeneration of electrolytes.	08
7.	Slags and their functions in extractive Metallurgy. Principles of working of the equipment used for roasting and agglomeration. Hearth roasters, flash roasters, fluidized bed roasters, sintering machines, etc.	07
	Total	42

Theory of Metallurgical processes Non-Ferrous Extractive Metallurgy	A.Volsky and E.Surgiovskaya H.S.Ray	Mir Publishers East-West press Narosa Publishing	1991 2008
Metallurgy		press Narosa	2008
	T T 1 1 1 1		
Hydrometallurgy	Venkatachalam	Pergamum press, NY	1998
Introduction to Chemical	R.H. Parker	McGraw Hill	1978
Metallurgy Principles of Extractive	Terkel Rosenqvist	McGraw Hill	1983
Metallurgy	J.D.Ghilchrist	Willey	1989
Extractive Metallurgy	J. Newton	Willey	1959
Extractive Metallurgy Unit Processes in Extractive	Pehlke R D	Eastern American Elsevier Publishing Co	1993
P M E U	rinciples of Extractive Ietallurgy xtractive Metallurgy xtractive Metallurgy	Terkel RosenqvistIetallurgyJ.D.Ghilchristxtractive MetallurgyJ. Newtonxtractive MetallurgyPehlke R Dinit Processes in ExtractivePehlke R D	Terkel RosenqvistMcGraw Hillrinciples of Extractive IetallurgyJ.D.GhilchristWilleyJ.D.GhilchristWilleyJ. NewtonWilleyxtractive Metallurgy rnit Processes in ExtractivePehlke R DEastern American Elsevier

METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR

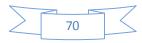

SEMESTER WISE COURSE STRUCTURE

B. Tech. 6th Semester

S. NO.	COURSE	TITLE / SUBJECT	ENGAGEMENT		C R E D I T			
	NO.		L	Т	Р	TH.	Р	TOTAL
1.	MME-601	Non Ferrous Extractive	4	1	-	5	-	5
		Metallurgy						
2.	MME-602	Extractive Metallurgy of Iron and	3	1	-	4	-	4
		Production of Ferro- Alloys						
3.	MME-603	Physical Metallurgy	3	1	-	4	-	4
	MME-603P	Laboratory Practice in Physical Metallurgy	-	-	2	-	1	1
4.	MME-604	Mechanical Behaviour of Materials	2	1	-	3	-	3
	MME-604P	Laboratory Practice in Mechanical Behaviour of Materials	-	-	2	-	1	1
5	MME-605	Joining of Materials	2	1	-	3	-	3
	MME-605P	Laboratory Practice in Joining of Materials	-	-	2	-	1	1
6.	MME-606	Material Characterization Techniques	2	1	-	3	-	3
7.	MME-607	Tour, Training and Professional Interview	-	-	-	-	2	2
		TOTAL	16	6	6	22	5	27

L – Lecture T – Tutorial P – Practical TH – Theory

68



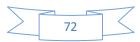
NAME OF DEPARTMENT:	Metallurgical & N	Aaterials Engineering
1. Subject Code: MME-601	Course Title: 1	Non-Ferrous Extractive
2. Contact Hours: L: 4;	T: 1; P:	Metallurgy 0
3. Examination Duration (Hrs):	Theory: 0 3	Practical: 0 0
4. Relative Weightage: M-I: 2 0	M-II : 2 0	ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 5 6 th Se	mester:	√ n Spring

6. Objective: To develop basic understanding of physico-chemical principles and processes involved in the extraction of various metals.

7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	Over view of the Physico-Chemical principles and processes of metal extraction.	06
2.	Production /extraction of heavy metals (Cu, Pb, Zn, Sn, Ni, Cr, Sb, Co). Light metals (Al, Mg, Ti) and precious metals (Au, Ag, Pt). Rare metals (W, Mo, Zr, U, Be) and semi conductor metals (Ge, Si).	25
3.	Detailed flow sheets for the extraction/production of the above metals	11
	Total	42

S. No.	Name of the Books/Publisher	Author(s)	Publisher	Year of Publications
1.	Extraction of Non-Ferrous Metals	Ray & Abrahim	Affiliated E-W Press	2008
2.	Non-Ferrous Metallurgy	W.H.Dennis	Sir Issac Pitman & Sons Ltd	1980
3.	Extractive Metallurgy	Newton J.	Wiley Eastern	1959
4.	Non Ferrous Production Metallurgy	J.L. Bray	John Wiley & Sons	1985


NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-602	Course Title		Metallurgy of the Metallurgy o		
2. Contact Hours: L: 3;	T: 1;	P: 0		2	
3. Examination Duration (Hrs):	Theory: 0	3 Pra	nctical: 0	D	
4. Relative Weightage: M-I: 2 0	M-II : 2	0 ASM:	1 0 ME:	5 0 PRE:	0 0
5. Credits: $0 4 6^{\text{th}}$ Set	mester:	tumn Sn	nring		

6. Objective: To provide knowledge about iron making from iron ore through blast furnace route and to understand the alternative methods of iron production.

7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	Iron - Raw materials and their preparation. Blast furnace stoves and blast preheating. Blast furnace design, construction and instrumentation. Thermal and material balance sheets.	14
2.	Burden calculations. B. F. slags and their behaviour slag-metal reactions Modifications, high top pressure, humidification. Oxygen-enriched blasts, solid, liquid and gaseous injection through hot blast, alternative methods of iron production. Sintering and palletizing.	18
3.	Introduction to ferro alloys, Production of ferro-alloys (Fe-Mn, Fe-Si, Fe-Mo,). Alternative methods of iron production such as: DRI, COREX, ROTARY KILN, SHAFT AND STRATEGIC-UDY PROCESSES.	10
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of
1.	Production of Iron and Steel Vol.I	G.R. Bashforth	Chapman & Hall	Publications 1965
2.	Iron Making	A.K. Biswas	SBA Publications	2005
3.	Iron Making	Tupkary R. H	Khanna Publishers, New Delhi	2008
4.	Sponge Iron Production by Direct Reduction of Iron Oxide	Amit Chatterjee	PHI	2010
5.	High Metal Production by Smelting Reduction of Iron Oxide	Amit Chatterjee	PHI	2010
6.	Physical chemistry of Iron & Steel making	Ward R.G.	ELBS	1999
7.	Physical chemistry of Iron & Steel making	Bodsworth C.	ELBS/Edward Arnold Pub.	1988

NAME OF DEPARTMENT	: Metallurgical & Materials	Engineering
--------------------	-----------------------------	-------------

1. Subject Code: MME-603	Course Title	: Physical 1	Metallurgy	
2. Contact Hours: L: 3;	T:1;	P: 0		
3. Examination Duration (Hrs):	Theory: 0	³ Pra	actical: 0 C	
4. Relative Weightage: M-I: 2 0	M-II : 2	0 ASM:	1 0 ME :	5 0 PRE: 0 0
5. Credits: $0 4 6^{\text{th}}$ Ser	nester:		l	
	Autu	ımn Sp	oring	

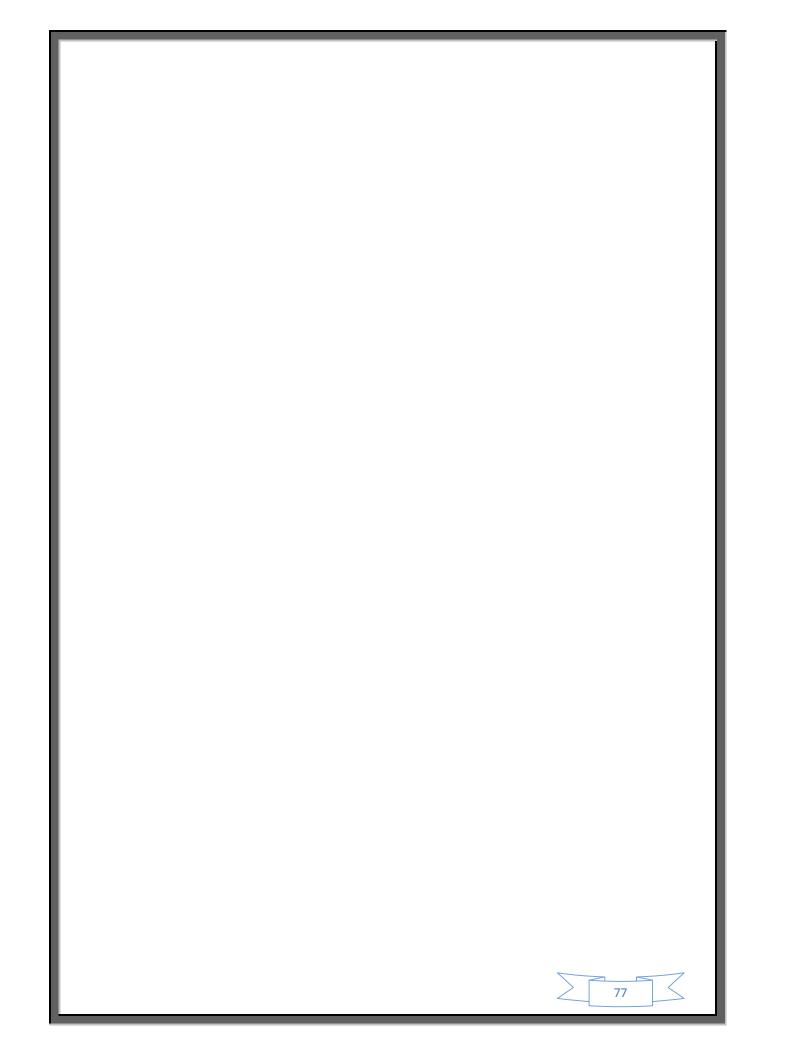
6. Objective: To provide the knowledge of structure property correlation regarding different metals and alloys.

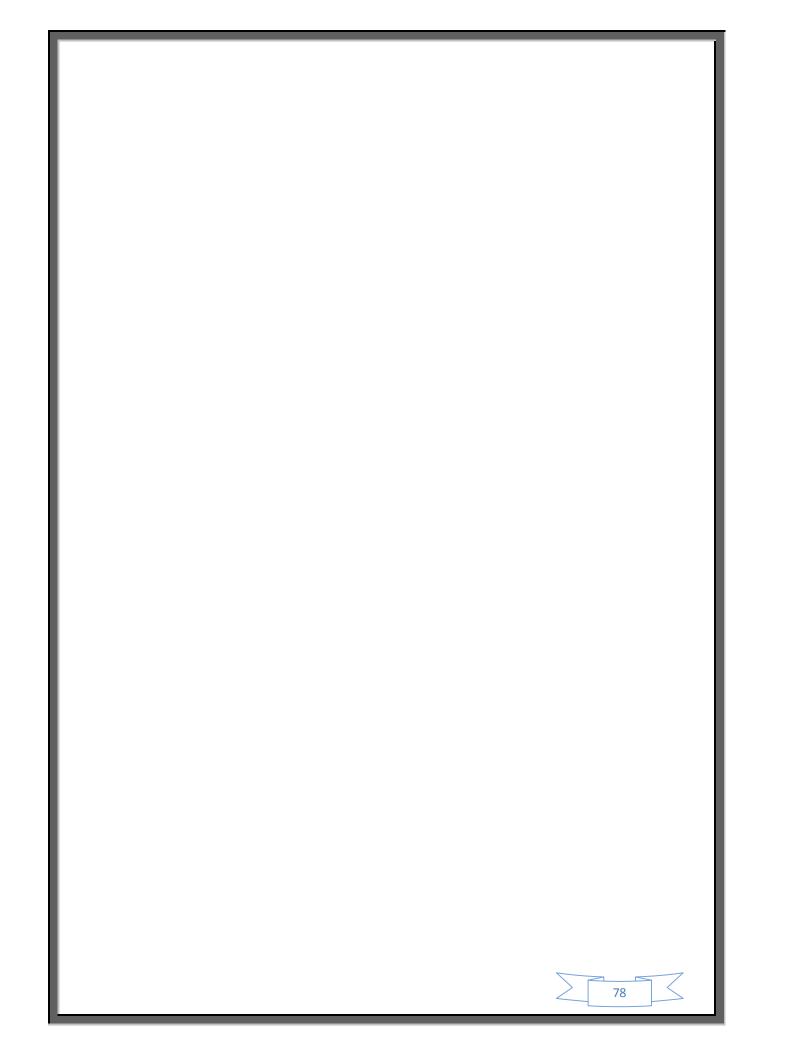
7. Details of the Course:

S.No.	Particulars	Contact Hours
1.	Brief review of Structure of metals and imperfections and their influence on the properties of materials. Classification and their influence on the properties of materials. Solid solutions - their characteristics and governing factors Classification - primary, secondary solid solutions and inter-metallic compounds.	16
2.	Solidification and nucleation, thermal curves, phase rule and equilibrium diagrams and Iron carbon equilibrium diagram and the critical phenomena. Binary and ternary systems. Eutectic, eutectoid, peritectic, peritectoid, monotectic, and precipitation reactions. Binary system: Cu-Ni, Cu-Zn, Cu-Be, Cu-Al, Al-Zn, Al-Si, Al-Mg, Pb-Sn etc. Isothermal transformation of Fe-C systems. Ternary alloys -white metal, Ni-Silver fusible alloys. Diffusion in solid state and its mechanism. Laws of diffusion. Kirkendal effect, Factors governing diffusion. Specifications of ferrous and non-ferrous alloys.	26
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of
1.	Principles of Physical Metallurgy	Reed Hill	Affiliated	Publications 2008
1.	Theples of Thysical Wetahurgy	Reed IIII	E-W Press	2000
			Pvt.Ltd.	
2.	Engineering Physical Metallurgy	Lakhtin	MIR	1998
			Publishers	
3.	Introduction to Physical Metallurgy	Avner	Tata	2008
			McGraw Hill	
4.	Physical Chemistry Of Metals	Darken &		2002
		Gurry	CBS	
5.	A Textbook on Physical Metallurgy	A K Mitra		2005
	~		CBS	
6.	Cast Iron Technology	Tiwan	CBS	2009
7.	Physical Metallurgy- Principles And	V.Raghavan	CDS	2007
	Practice	, is tagina (an	Prentice	,
			Hall Of	
		W D	India	••••
8.	Material Science And Engineering	W D Callister	John	2000
		Callister	Wiley And	
			Sons	
9.	Physical Metallurgy	Hansen		1987
		Peter	Cambridge	
			University Press	
			riess	

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: MME-603P	Course Title: Laboratory Practice in Physical Metallurgy
2. Contact Hours : L: 0; T: 0;	61
3. Examination Duration (Hrs):	Theory: 0 0 Practical: 0 2
4. Relative Weightage: MSLE: 2	5 ELSE: 2 5
5. Credits: 0 3 6 th	Semester: √
	Autumn Spring


6. Objective: To study the microstructures and to familiarize with the measurement of micro-hardness of different materials.

7. List of Experiments:

S. No.	Experiments
1.	Study BCC, FCC, HCP crystal models (Computer aided studies)
2.	Study of Burgers vector in edge and screw dislocations.
3.	Measurement of Micro-hardness on the surface of a steel specimen.
4.	Stereographic projections - construction of Wulfføs net.
5.	Microstructure study of various standard samples of steel, non-ferrous alloys (binary and ternary systems), and cast irons.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-604	Course Title:	Mechanica	l Behaviour of	Materials	
2. Contact Hours: L: 2;	T: 1;	P: 0			
3. Examination Duration (Hrs):	Theory:	0 3	Practical: 0	0	
4. Relative Weightage: M-I: 2	0 M-II :	2 0 ASN	<i>I</i> : 1 0 ME:	5 0	PRE: 0 0
5. Credits: 0 3	5 th Semester:				
	A	utumn	Spring		

6. Objective: To develop basic understanding of the response of engineering materials to mechanical loading.

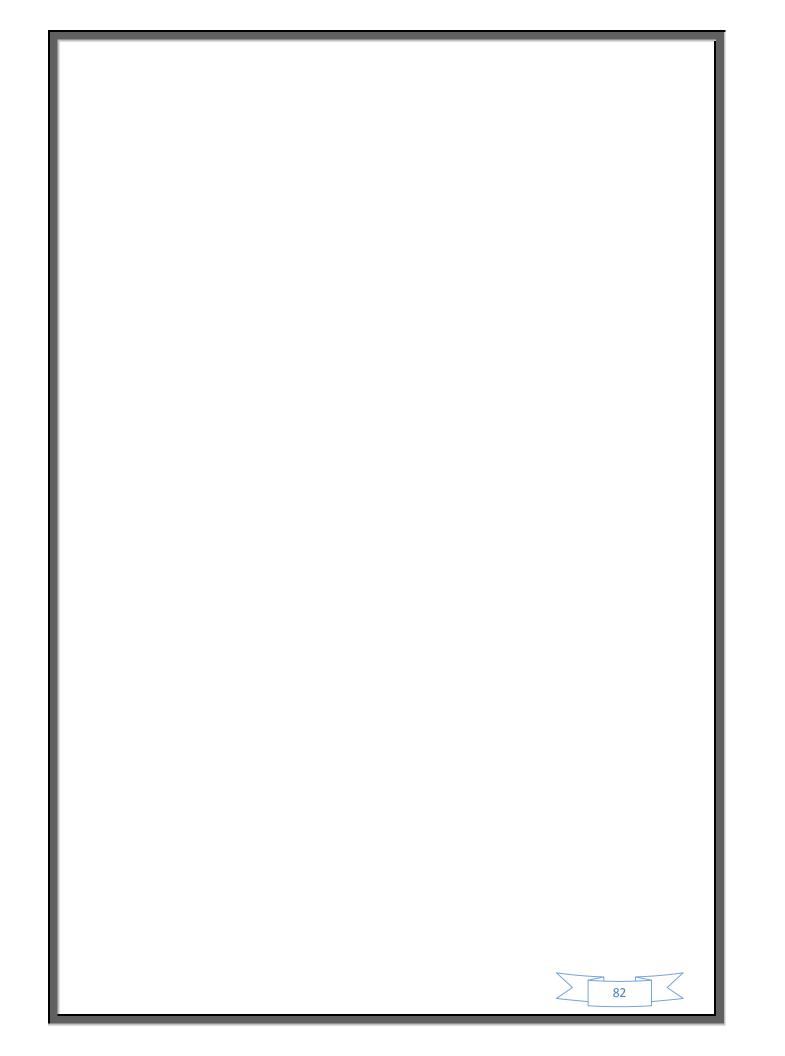
7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	Introduction to elasticity, stress-strain curves, toughness and stiffness.	03
2.	Yield phenomena, Slip-formation of slip line, slip bands, cross slip, twinning.	03
3.	Strain hardening, theories, stress curves for single and poly crystals, effect of grain size, temperature, speed, Bauschingerøs effect, texture and preferred orientation.	06
4.	Effect of solutes and precipitates on yield stress and hardening.	02
5.	Influence of defects on the mechanical properties. Recovery, recrystallization and grain growth.	03
6.	Fracture -theory, classification and strength. Ductile to brittle fracture.	05
7.	Testing of materials, principles and its significance, measurement of load, length and deformation. Tests -static, tension and compression, static shear and bending, hardness and impact.	10
08.	Fatigue and creep	10
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of
1.	Mechanical Metallurgy	Dieter G E	McGraw Hill	Publications 1988
2.	Physical Metallurgy	Reedhill	Affiliated E-W Press Pvt.Ltd.	2008
3.	Introduction to Dislocations	D.Hull & D.J.Bacon	Butterworth Heinemann	2001
4.	Mechanical Behaviour Of Materials	T.H.Courtney	McGraw Hills	1990
5.	Mechanical Behaviour Of Materials	M.A.Meyers & K K Chawla	Prentice Hall	1999

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-604P
 Course Title: Laboratory Practice in Mechanical Behaviour of Materials


2. Contact Hours : L: 0;	T: 0;	P: 2	
3. Examination Duration	n (Hrs): Theory:	0 0	Practical: 0 2
4. Relative Weightage:	MSLE : 2 5	ESLE: 2	2 5
5. Credits: 0 1	6 th Semester:		\checkmark
		Autumn	Spring

6. Objective: To gain knowledge about the working of different material testing equipments, and principles of testing etc.

7. List of Experiments:

S. No.	Experiments
1.	Tensile test - preparation of a steel specimen and its testing.
2.	Measurement of Brinells Hardness of some alloys/steel specimens.
3.	Testing of a given sample for: a. Rockwell Hardness b. Vickers Hardness.
4.	Determination of the impact strength of a given sample (L.C.Steel, M.C. Steel, H.C.Steel and C.Iron) by Izod and Charpy method.
5.	Cupping Test of a given sheet metal.
6.	Study of the various types of fractures occurring in different materials.

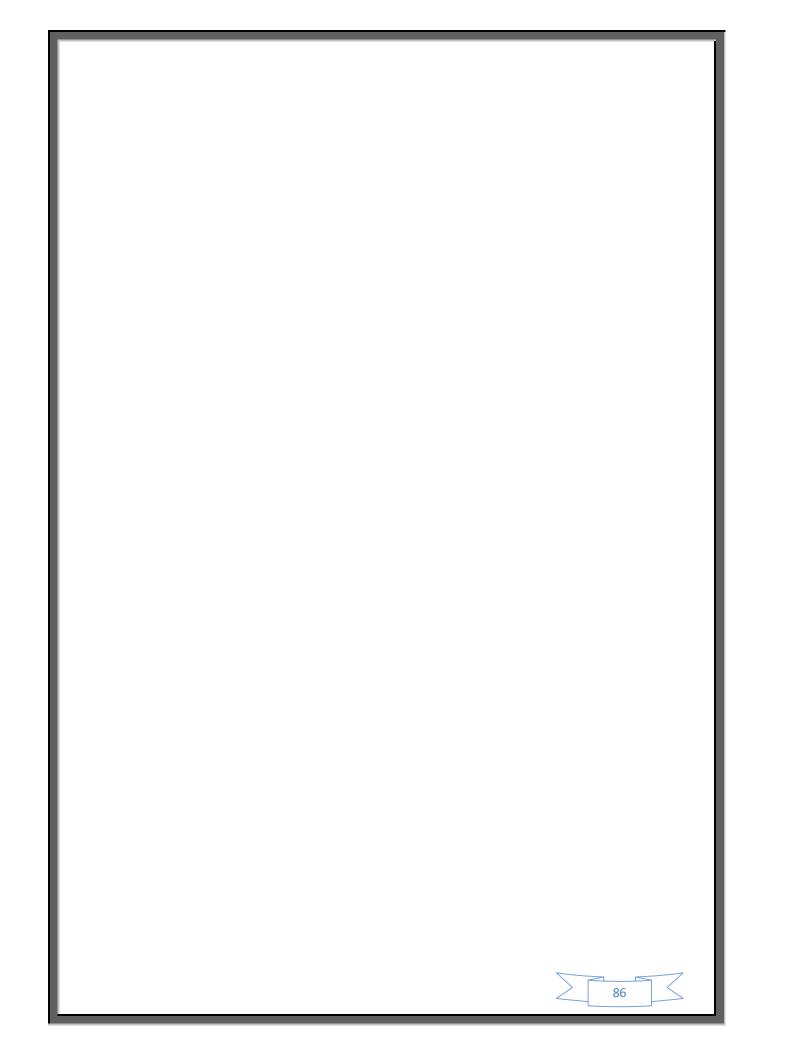
NAME OF DEPARTMENT: Metallurgical & Materials Engineering
1. Subject Code: MME-605 Course Title: Joining of Materials
2. Contact Hours: L: 2; T: 1; P: 0
3. Examination Duration (Hrs): Theory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2 0 M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: $0 3$ 6 th Semester: $$ Autumn Spring

6. Objective: To familiarize with the materials joining processes, principles and the equipments involved therein.

7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	Principles and classification of joining methods. Some important commercial applications of brazing and soldering.	05
2.	Conventional and special/recent welding practices including submerged, Laser, Plasma, MIG, TIG, Electron beam welding, solid-state welding processes, etc.	05
3.	Welding equipments, Structure of welds and fusion zones.	03
4.	Transformations in parent metal, design of weldments, slag-metal equilibria, gas pick up by welds and its influence. Weld cracking and its prevention. Preheating of base metals. Preheating temperature etc. Heat treatment of welds. Testing and quality control of welds- Macro and micro examinations etc.	15
5.		10
	Metallurgical aspects of welding. Weld defects and testing. Joining of metals and non metallic materials (Adhesive joining).	
6.		04
	Weldability of carbon, stainless steel and other alloy steels, cast irons, Cu, Al, Ti and their alloys, etc. ISI and other specifications.	
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Modern Welding Technology	Howard B Cary, Helzar	Pearson Prentice Hall	2005
2.	Manufacturing Engineering And Technology	S.Kalpakjian R.S.Steven	Prentice Hall	2001
3.	Welding Engineering And Technology	R.S. Parmar	Khanna Publishers	2002
4.	Welding Technology	Gower A. Kennedy	Macmillan Publishing Company	1974
5.	Welding ó Principles And Application	Larry Jeffus	Delmar Thomson Learning	1999
6.	Principles Of Welding	Robert W Messler	John Wiley Sons	1999


NAME OF DEPARTMENT	: Me	tallurgical	& Materials Engineering
1. Subject Code: MME-605P	Course '	Title: Labo	ratory Practice in Joining of Materials
2. Contact Hours: L: 0;	T:0;	P: 2	
3. Examination Duration (Hrs):	Theory:	0 0	Practical: 0 2
4. Relative Weightage: MSLE: 2	5	ESLE: 2	5
5. Credits: 0 1 6 th 5	Semester:		\checkmark
6 Objectives. To gein knowledge e	bout the yer	Autumn	Spring methods and the working of

6. Objective: To gain knowledge about the various joining methods and the working of equipments involved.

7. List of Experiments:

S. No.	Experiments
1.	Preparation and joining of two surfaces by soldering and brazing.
2.	Welding of cast irons, Aluminium, Copper and their alloys.
3.	Arc Welding of steel parts/welding to fill a hole in a steel trough.
4.	Gas welding of a given sample.
5.	Macro and Micro- examination of a welded joint.
6.	Determination of the strength properties of a welded joint and weld defects.
7.	Heat-treatment of a weld.
8.	Welding by other modern techniques for which facilities may be available.
9.	Welding of dissimilar metals i.e. Steel, cast iron , Stainless Steel, Mild steel, etc.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

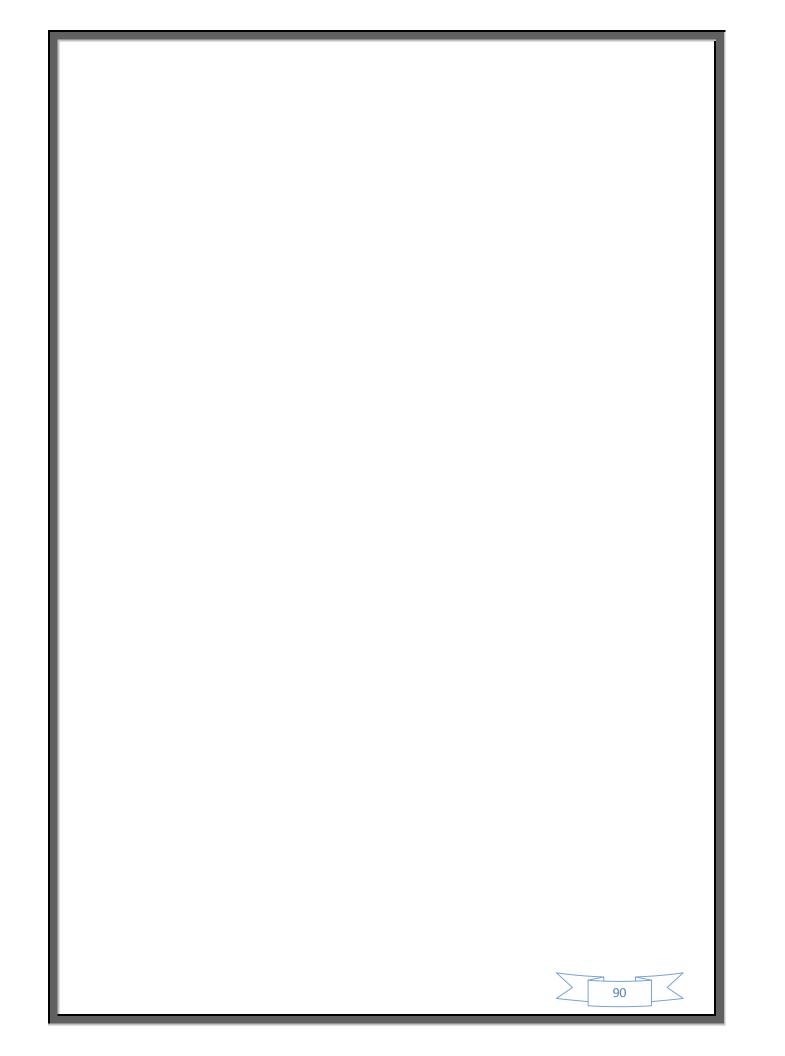
1. Subject Code: MME-606 Course Title: Material Characterization Techniques	
2. Contact Hours : L: 2; T: 1; P: 0	
3. Examination Duration (Hrs): Theory: 0 3 Practical: 0 0	
4. Relative Weightage: M-I: 2 0 M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0	
5. Credits: 0_3 6 th Semester: $$ Autumn Spring	

6. Objective: To familiarize with the various methods of materials characterization and the principles involved therein.

7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	X-Ray production. Characteristics of X-Rays. X-Ray diffraction. Diffraction theory and Techniques -Laue, Powder and rotating crystal techniques. Intensity calculations and structure determination.	12
2.	Electron Microscopy and its applications to Metallurgical studies. Techniques of specimen preparation for electron microscopy.	08
3.	Principles of Electron diffraction. Electron Emission phenomenon. Field ion Microscopy,	08
4.	Introduction to techniques such as ó Auger Electron spectroscopy, scanning tunneling microscopy, Atomic force microscopy.	08
5.	Electron Probe micro analysis etc. Detailed study of Radiographic techniques.	06
	Total	42

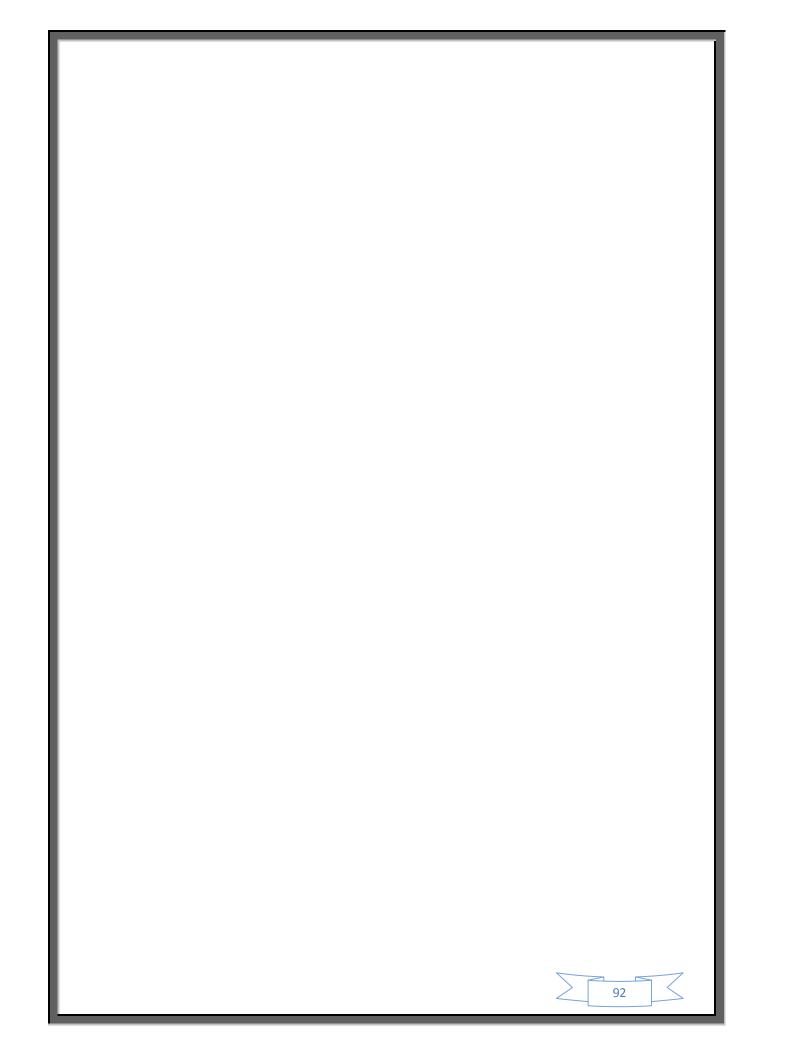
S. No.	Name of the Books	Author(s)	Publisher	Year of Publication s
1.	Elements of X-Ray diffraction	B.D. Cullity	Addison- Wesley Publishing Company	1980
2.	Optical Microscopy Of Metals	R.C.Gifkins	Sir Issac Pitman And Sons	1970
3.	Electron Microscopy and Analysis	P.J Goodhey J.Humphreys R Beanland	Taylor and Francis	2001



NAME OF DEPARTMENT: Metallurgical & Materials Engineering	
1. Subject Code: MME-607 Course Title: Tour, Training and Profession Interview	nal
2. Contact Hours: L: 0; T: 0; P: 2	
3. Examination Duration (Hrs): Theory: 0 0 Practical: 0 2	
4. Relative Weightage: M-I: 0 0 M-II: 0 0 ASM: 0 0 ME: 5	0 PRE: 0 0
5. Credits: $0 2 6^{\text{th}}$ Semester: $$	
AutumnSpring6. Objective:To gain practical knowledge about the actual working of the industr processes involve and the functioning of the industrial equipments e	

7. Details of the Course:

S.No	Particulars
1.	Each student will be required to undertake practical training during the winter vacations for about 10-16 weeks in metallurgical industries. Each student will submit a training report in the department and give details of the jobs he was assigned during the practical training at the industry where he has taken such practical training. Separate report for the training taken at different industries will be required to be submitted by each candidate.
2.	The students will also be required to go for a long industrial/educational tour to visit various industries and educational Organisations of Metallurgical concern. Each student will submit a tour report on completion of the tours.
3.	The tour and training report as submitted by each student will be assessed by the staff members and evaluated for sessional awards.
4.	A viva-voce examination will be conducted for assessment of Tour and Training undertaken by the student and for his/her professional achievements.


METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR

SEMESTER WISE COURSE STRUCTURE

B. Tech. 7th Semester

S. NO.	COURSE	TITLE / SUBJECT	ENGAGEMENT		C R E D I T			
	NO.		L	Т	Р	TH.	Р	TOTAL
1.	MME-701	Non-Destructive Testing	2	1	-	3	-	3
2.	MME-702	Steel Technology	2	1	-	3	-	3
3.	MME-703	Phase Transformation & Heat Treatment of Materials Laboratory Practice in	2	1	-	3	-	3
	MME-703 P	Phase Transformation & Heat Treatment of Materials	-	-	2	-	1	1
4.	MME-704	Mechanical Working of Materials	2	1	-	3	-	3
	MME-704 P	Laboratory Practice in Mechanical Working of Materials	-	-	2	-	1	1
5	MME-705	Powder Metallurgy	3	1	-	4	-	4
6.		ELECTIVE – I One of the following:	2	1	-	3	-	3
	MTH-703E	Operation Research	-	-	-	-	-	-
	MME-706E	Ceramics, Glass & Polymer Technology	-	-	-	-	-	-
	MME-707E	Metallurgy of Nuclear Materials	-	-	-	-	-	-
	MME-708E	Transport Phenomena in Metallurgical Processes	-	-	-	-	-	-
7.	MME-709	Literature Survey of Project Work	-	3	-	3	-	2
8.	MME-710	Guided Reading, Group Discussion, and Seminar	-	1	-	-	-	1
		TOTAL	13	10	4	22	2	24

L – Lecture T – Tutorial P – Practical TH – Theory

NAME OF DEPARTMENT: Metallurgical & Materials Engineering				
1. Subject Code: MME-701	Course Title: Non-Destructive Testing			
2. Contact Hours : L: 2 ; T	: 1; P: 0			
3. Examination Duration (Hrs): T	Theory: 0 3 Practical: 0 0			
4. Relative Weightage: M-I: 2 0	M-II : 2 0 ASM : 1 0 ME : 5 0 PRE : 0 0			
5. Credits: 0 3 7 th Semo	ester: \checkmark			
	Autumn Spring			

6. Objective : To familiarize with the basic methods of Non- Destructive Testing technique, principles, test procedures and equipments involved therein.

7.Details of the Course:

S. No.	Particulars	Contact Hours
1.	Importance of testing in the quality control of materials/product.	05
2.	Significance of N.D. Testing. Principle, procedure and equipment for conventional methods of NDT such as- Liquid penetrant, Magnetic particle, Eddy current, radiography, Ultrasonic and acoustic emission, optical and acoustic hollowgraphy and thermography, In-situ metallographic examination.	
3. 4.	Comparison and selection of NDT methods. Advantages, limitations, applications of each N.D. Testing	08 43
	methods.	42

S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Non-Destructive Evaluation and Quality Control	ASM Metals Handbook	American Society of Metals, Metals Park, Ohio	2001
2.	Non-Destructive Testing	Mc Gonnagle, W T	McGraw Hill Book Co	1988
3.	Non-Destructive Testing	Louis Cartz,	ASM International, Metals Park Ohio	1995
4.	Non Destructive Testing	Barry Hull and Vernon John	ELBS / Macmillan	1989

NAME OF DEPARTMENT: Metallurgical & Mater	ials Engineering
1. Subject Code:MME-702Course	Title: Steel Technology
2. Contact Hours : L: 2; T: 1; P: 0	
3. Examination Duration (Hrs): Theory: 0 3	Practical: 0 0
4. Relative Weightage: M-I: 2 0 M-II: 2 0	ASM 1 0 ME: 5 0 PRE: 0 0
5. Credits: $0 3$ 7 th Semester: $$	
Auto	ımn Spring

6. Objective: To understand the basic principles of steel making.

7.Details of the Course:

S. No.	Particulars	Contact Hours
1.	Brief history and earlier methods of steel making. Mixers and	
	their merits. Desiliconization and desulphurization of B.F iron.	06
2.	Steel making by Bessemer and side blown converters O.H and	
	Duplex/Triplex methods, Electric-Arc and Induction processes.	10
	Basic oxygen processes -L.D KALDO, ROTOR, LDAC, and top	
	and bottom blown practices.	
3.	Physico-Chemical principles of each of the above practices.	
	Inclusions in steel. Deoxidation and vacuum treatment of steels.	05
4.	Electroslag refining. Ingot mould and base plate preparation for	
	casting. Steel casting practice. Ingot defects and their control.	
	Continuous casting practice of steel and its merits. Principles and	15
	production of alloy steels - HSLA, Tool and die, stainless, spring,	
	magnetic and silicon steels etc.	
5.	Recent trends in plain and alloy steel technology. Instrumentation	06
	in steel works. Indian Steel plants and practices.	
	Total	42

S.No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Iron Making and Steel Making ó Theory and practice	Ahindra Ghosh and Amit Chatterjee,	РНІ	2008
2.	Introduction to Modern Steel Making	Tupkary, R.H.	Khanna Publications, New Delhi	1994
3.	The Making, Shaping and Treating of Steel	Richard J Fruchal	AISE Steel Foundation	1998
4.	Manufacture of Iron and Steel, Vol 2	Bashforth, GR	Chapman & Hall, London	1965
5.	Introduction to Steel making	R.H.Tupkari	Khanna Publishers	2004
6.	Physical Chemistry of Iron and Steel Making	R.G.Ward	Edward Arnold Publications	1999
7.	Physical Chemistry of Iron and Steel Making	C.Bodswarth	Edward Arnold Publications	1988

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-703	Course Title: Phase Transformation and Heat Treatment
2. Contact Hours: L: 2 ; T: 1;	P: 0
3. Examination Duration (Hrs): Theo	ory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2 0	M-II: 2 0 ASM 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 7 th Seme	ster: √

Autumn Spring

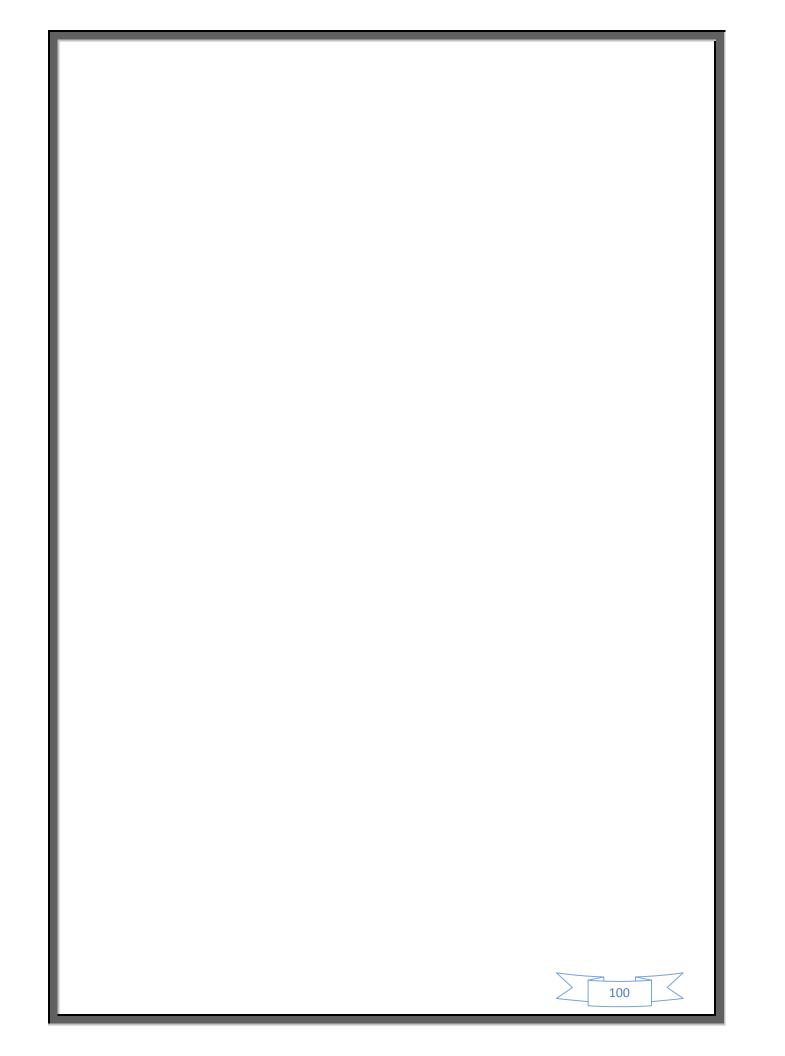
6. Objective: To develop understanding of phase transformations in metals and alloys and to give insight into the microstructural changes occurring due to different heat treatments.

7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	Importance of heat treatment, different types of heat treatment processes and their application.	04
2.	Surface hardening treatments.	02
3.	Alloying elements - their effects on Fe-C system.	06
4.	Heat treatment -various processes and their applications.	08
5.	Hardenability - its significance and factors affecting hardenability. Case Hardening - various processes and their applications. Associated phase transformations.	08
6.	Heat treatment of plain carbon and alloy steels, Non-ferrous alloys (Al, Cu, Ni and Co base alloys, bearing alloys, etc). Plain and alloy cast irons and their heat treatment.	10
7.	Phase transformations, classification, mechanics, thermodynamics, and kinetics of solid state transformations.	04
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of Publication
1.	Principles of Physical Metallurgy	Lakhtin	MIR Publications	1988
2.	Heat Treatment Principles and Techniques	Rajan and Sharma	Prentice Hall of India (P) Ltd,	2004
3.	Handbook of Heat Treatment of Steels	Prabhudev, K H.	Tata - McGraw Hill Publishing Co.	2000
4.	Heat Treatment of Metals	Vijendra Singh	Standard Publishers Distributors,	1998
5.	Metals Handbook Vol.4	American Society for Metals	ASM Metals Parks, Ohio, USA	2001
6.	Steel and its Heat Treatment	Karl-Erik Thelning	Butterworths London	1984
7.	Theory of Heat Treatment of Metals	Novikov I	MIR Publishers, Moscow	1978
8.	Phase transformations in metals and alloys	Porter & Easterling	Chapman and Hall, London	1997

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: MME-703 P	Course Title: Laboratory Practice in Heat Treatment of Materials
2. Contact Hours : L:0; T: 0;	P: 2
3. Examination Duration (Hrs): Theo	ry: 0 0 Practical: 0 2
4. Relative Weightage: MSLE: 2 5	ESLE: 2 5
5. Credits: 0 1 7 th Semester:	√ Autumn Spring

6. Objective: To gain practical knowledge about the effects of various heat treatment on the structure and properties of materials.

7. List of Experiments

S.No.	Experiments
1.	Jominy-end-Quench test for determination of harden ability.
2.	Effect of the heating time and temperature, and cooling rate on the structure & properties of alloys.
3.	Study of the isothermal transformations in Fe-C systems.
4.	Annealing and normalizing of alloys.
5.	Case carburizing, nitriding, cyaniding, & flame hardening.
6.	Heat treatment of tool steels.

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-704	Course Title: Mechanical Working of Materials
2. Contact Hours : L: 2; T: 1;	P: 0
3. Examination Duration (Hrs): Theo	ory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2 0	M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 7 th Semeste	er: 🗸
	Autumn Spring

6. Objective: To familiarize with the fundamentals involved in understanding the response of engineering materials to mechanical loading and to understand basics of different metal working processes, equipments involved etc.

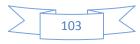
7. Details of the Course:

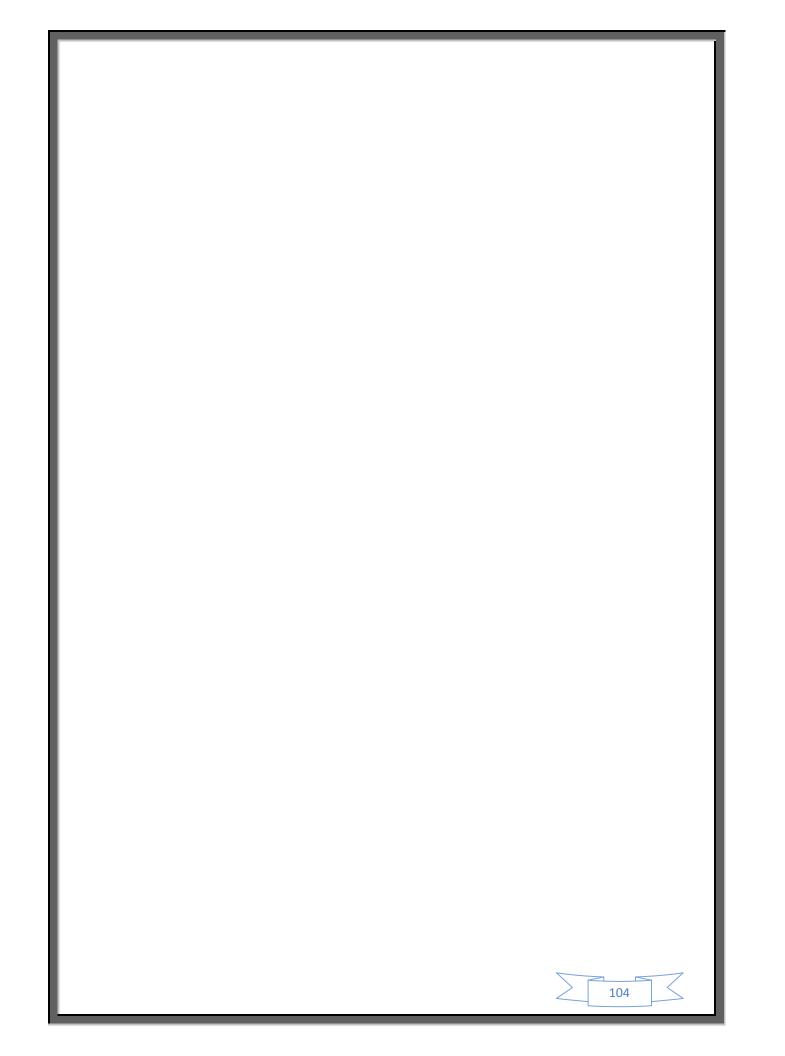
S. No	Particulars	Contact Hours
1.	Metal working: Classification of metal working(forming processes, mechanics of	10
	metal working, flow stress determination, temperature in metal working, effect of strain rates, metallurgical structure. Friction and lubrication. Workability, residual stresses.	
2.	Rolling: classification of rolling processes, rolling mills, hot rolling and cold rolling, rolling of bars and shapes, defects in rolled products.	04
3.	Extrusion: classification of extrusion processes, extrusion equipment, hot extrusion and cold extrusion, defect in extruded products.	04
4.	Forging: classification of forging processes, forging equipments, open die and closed die forging, forging die materials, forging defects.	03
5.	Drawing of rods, wires and tubes : Rod wire and tube drawing processes, drawing equipments, defects in rods wires and tubes. high velocity forming, press forming of metals - principles, processes and equipments. Analysis of forces operative during various metal working processes.	06
6.	Sheet Metal forming: Forming methods; shearing, blanking, bending, stretch forming, deep drawing, super plastic forming, defects in formed parts.	04

7.	Non-conventional Forming Methods: Explosive Forming, Magnetic Forming, Electric discharge forming, Laser Forming.	05
8.	Polymer Working Processes: Extrusion, Moulding, Thermoforming Principle, processes and Equipment employed.	06
	Total	42

S.	Name of the Books	Author(s)	Publisher	Year of
No.				Publication
1.	Mechanical Metallurgy	Dieter	McGraw Hill	1988 2001
2.	Metals Handbook, Vol.14, Forming and Forging		Metals Park, Ohio, USA	
3.	Handbook of Metal Forming	Kurt Lange	Society of Manufacturing	1988
4.	Metal Forming Fundamentals and Applications	Tylan Altan, Soo Oh, Harold Gegel	Engineers, Michigan ASM, Metals Park, Ohio, USA	1983
5.	Mechanical Treatment of Steel, Vol.4	Bashforth G R	Chapman & Hall	1968

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

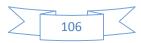

1. Subject Code: MME-704 P **Course Title:** Laboratory Practice in Mechanical Working of Materials


2. Contact Ho	ours: L:0;	T: 0;	P: 2	
3. Examinatio	on Duration ((Hrs): Theory:	0 0	Practical: 0 2
4. Relative W	eightage: MS	SLE: 2 5	ELSE :	2 5
5. Credits:	0 1	7 th Semester:	\checkmark	
			Autumn	Spring

6. Objective: To familiarize the students with the construction and working of different metal working equipments and to perform different tests.

7. List of Experiments

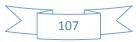
S. No.	Experiments
1.	To perform fatigue testing and drawing of S-N Curves
2.	To perform the Stress - Rupture Test.
3.	Study of the construction and working of a creep testing machine.
4.	To perform wire drawing operation.
5.	To perform rolling of materials.
6.	To perform the forging operation.


NAME OF DEPARTMENT: Metallurgical & Materials Engineering	
1. Subject Code:MME-705Course Title:Powder Metallurgy	
2. Contact Hours : L: 2; T: 1; P: 0	
3. Examination Duration (Hrs): Theory: 0 3 Practical: 0 0	
4. Relative Weightage: M-I: 2 0 M-II: 2 0 ASM 1 0 ME: 5 0	PRE: 0 0
5. Credits: 0 3 7 th Semester: $$ Autumn Spring	
~ rs	

6. Objective : To impart knowledge on principles of metal powder processing and methods to make metal powder based engineering products.

7. Details of the Course:

S. No.	Particulars	Contact Hours
1.	The importance of Powder Metallurgy.	01
2.	Various methods of producing metal powders. Characteristics of metal powders and their correlation with the various methods of production. Hazards in metals powder production.	08
3.	Testing and classification of powders. Treatment of metal powders prior to compacting - Mixing and conditioning of metal powders. Compacting of cold and hot pressing and their limitations.	05
4.	Design of dies. Rolling, slip casting, forging and extrusion of metal powders. Explosive compaction. Factors influencing the properties of compacts.	05
5.	Sintering - its significance in powder metallurgy, sintering environments, importance of controlled atmosphere for sintering. Sintering equipments and their classification. Factors influencing	04
6.	sintering of metal powders. Techniques of activated sintering. Post sintering operations and the properties of sintered products/ compacts.	10
	Various powder products including dense, porous, hard,	06
7.	refractory, magnetic, dispersion strengthened and composite materials.	
8.	Products for electrical contacts, friction parts etc.	03
	Total	42


S.No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Powder Metallurgy: Science Technology and Applications	Angelo P C and Subramanian	PHI Dhannat Bai	2008 1982
2.	Powder Metallurgy	Sinha A K	Dhanpat Rai & Sons	1982
3.	Powder Metallurgy of Iron & Steel	German, R M	John Wiley & Sons, NY	1998
4.	Metals Handbook, Vol.7, Powder Metallurgy		Metals Park, Ohio, USA	1990
5.	Powder Metallurgy Opportunities for Engineering Industries	Ramakrishnan	Oxford and IBH Publishing Co Pvt Ld	1987
6.	Powder Metallurgy Applications, Advantages and Limitations	Erhard Klar	American Society for Metals	1983
7.	Mechanical Alloying	Soni PR	Cambridge International	2002
8.	Powder Metallurgy	Sands and Shakespeare	George Newes Ltd, London	1966

6. Objective: To familiarize with the fundamentals of operations research and its associated fields.

7.Details of the Course:

S.No.	Particulars	Contact Hours
1.	Nature and Development of Operations Research.	05
2.	Problem formulation, Linear Programming Problem, Graphical Method, Simplex Method, Two phase, Simplex Method.	12
3.	Big M method, Transportation and Assignment Models. Replacement.	10
4.	Models - Simple Problems. Game Theory; Two person Zero Sum Game. Sequencing Models, Processing n-jobs through two Machines, Processing n-jobs through three machines.	09
5.	Queuing Theory: Single- Channel Poisson Arrivals with Exponential Service (M/M/I) Model.	06
	Total	42

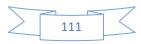
S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Linear programming	S.I. Gass	McGraw Hill	1994
2.	Operations Research An Introduction	Hamidi A.Taha	Pearson Education Prentice Hall	2005
3.	Theory of Games and Linear Programming	S.Vajda	John Wiley & Sons	1960
4.	Operation research	Kanti Swarup & P.K.Gupta	Sultan Chan and Sons	2007

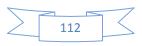
NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME	-706E Course Title: Ceramic, Glass and Polymer Technology
2. Contact Hours: L: 2;	T: 1; P: 0
3. Examination Duration	(Hrs): Theory: 0 3 Practical: 0 0
4. Relative Weightage:	M-I: 2 0 M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3	7 th Semester: √
	Autumn Spring

6. Objective: This course aims at providing the fundamental knowledge about ceramics, glasses and polymers, and to understand their processing, properties and applications.

S. No.	Particulars	Contact Hours
1.	Ceramics: Introduction to ceramics, structural characteristics of ceramic materials, crystal binding, structural imperfections, phase equilibria and microstructure of ceramic system. High temperature reactions and their kinetics. Classification and applications of ceramic materials. Ceramic powders - their preparation, characterisation, mixing and compaction, various methods of forming ceramic products. Calcination, firing and finishing of ceramic products, glazing and enamelling. Whitewares, abrasive etc. Testing and quality control of ceramic products. Synthesis of advanced ceramic materials like PSZ, Si-N, Si-C, Alumina, etc.	20
2.	Glass: Classification of glass, glass manufacturing and finishing operations. Factors influencing glass formation. Structure of glass. Mechanical, electrical, thermal, optical and other important properties of glasses. Applications of glasses.	12
3.	Polymers: Classification of Polymers, Properties of polymers, Methods of Polymerisation, common polymer resins such as phenolic resins, Amines resins, epoxy resins, and polyesters.	10
	Total	42


S. No.	Name of the Books	Author(s)	Publisher	Year of Publication
1.	Polymer Science	Gowariker , Viswnathan, Jayadev Sreedhar	New Age International Ltd.	2005
2.	Fundamentals of Ceramics	Michael Barsoum	McGraw Hill Publishing Co.	1997
3.	Foundations of Materials Science and Engineering	William F.Smith	McGraw-Hill Inc, New York	1993
4.	Introduction to Fine Ceramics	Nobuka `Ichinose	John Wiley	1987
5.	Composite Materials: Engineering & Science	Mathews and Rawlings	Chapman & Hall, London,	1994
6.	Ceramic Matrix Composites	Chawla K K	Chapman and Hall, UK	1993
7.	Modern Composite Materials	Broutman and Krock	Addison Wesley Co.	1967
8.	Physical Ceramics for Engineers	VanVlack K H,	Addison Wesley Co.	1964
9.	Introduction to Ceramics	Kingery, W D	John Wiley, USA	1960
10.	Modern Ceramic Engineering- properties, processing and use in design.	David W. Richerson	Marcel Dekker, Inc.	1992
11.	Introduction to the principles of ceramic processing.	Reed J.S	A Wiley Interscience Publication	1988


1. Subject Code: MME-707E Course Title: Metallurgy of Nuclear Materials (Elective -I)
2. Contact Hours: L: 2; T: 1; P: 0
3. Examination Duration (Hrs): Theory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2 0 M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 7 th Semester: √ Autumn Spring

6. Objective: To provide the knowledge about various nuclear processes and to study the different radio-active materials.

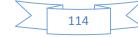
S. No.	Particulars	Contact Hours
1.	Structure of nucleus.	04
2.	Radioactivity, Fusion and fission.	06
3.	Nuclear reactors and the construction, Nuclear power production- Indian Scenario.	08
4.	Nuclear materials, Fuels elements, moderators, coolants, reflectors, control rods and other structural materials. Cannon materials and their properties. Production of nuclear grade metals-U,Th,Zr, Nb and Ta etc processing of spent fuel.	12
5.	Radiation growth theories, Radiation damage, radiation hazards etc. Radio isotopes and their uses, Disposal of radioactive wastes, Occurrence and processing of nuclear materials in India	10
	Total	40

S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Materials in Nuclear Applications- vol.1,	Gupta C K	CRC publications	1989
2.	Nuclear Fuel Elements: design fabrication and performance	Frost	PERGAMON publications	1982
3.	Fundamental Aspects of Nuclear Reactor Fuel Elements	Olander D R	NTIS publication	1976
4.	Nuclear Reactor Fuel Elements, Metallurgy and Fabrication	Kaufman A R,	John Wiley	1962

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME	E-708E Cou		Fransport Phenomena in Aetallurgical Processes
2. Contact Hours: L: 2 ;	T: 1; I	P: 0	<u> </u>
3. Examination Duration	n (Hrs): Theory:	0 3	Practical: 0 0
4. Relative Weightage:	M-I : 2 0 M-I	(: 2 0 AS	M : 1 0 ME : 5 0 PRE : 0 0
5. Credits: 0 3	7 th Semester:	√ Autumn	Spring

6. Objective : To familiarize with the fundamentals of heat, mass and momentum transfer in various metallurgical processes.

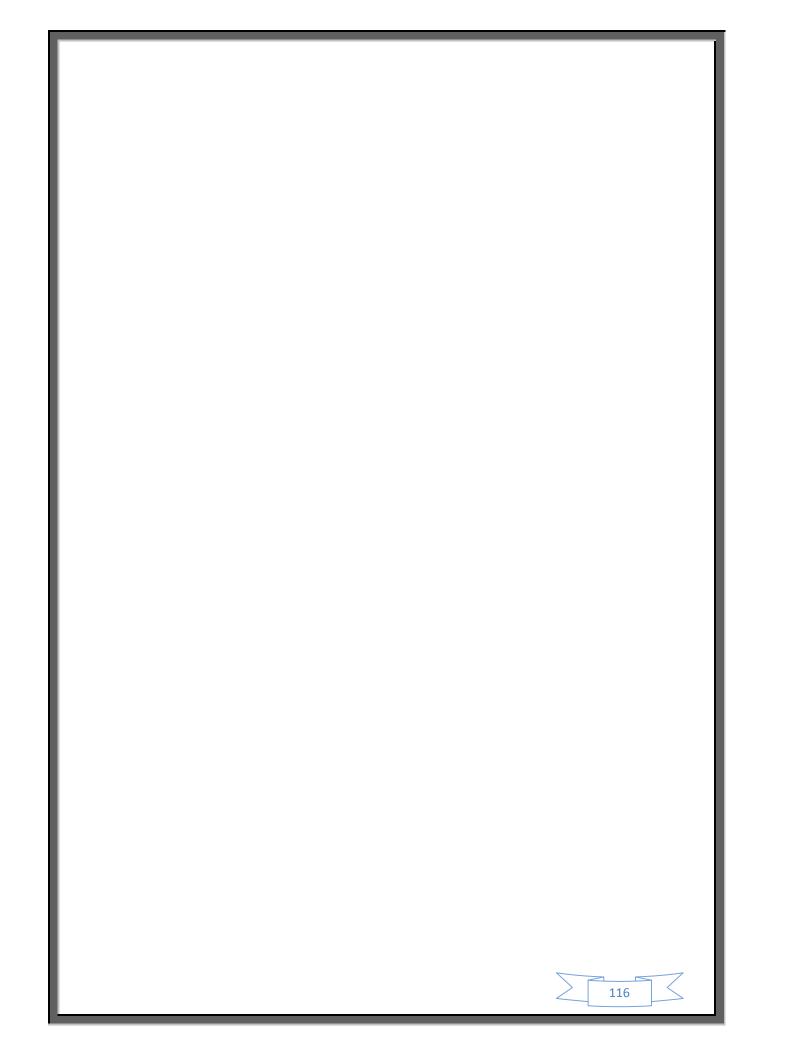

7.Details of the Course:

S. No.	Particulars	Contact Hours
1.	Mass transfer processes and Metallurgical Kinetics-Rate controlling step. Diffusion ó Laws of diffusion ó steady state one dimensional ó Pseudo-steady state diffusionó unsteady state diffusion Diffusion in gases, liquid and solid. Convection and Mass Transfer in Fluids under Laminar and Turbulent flow. Mass transfer between a fluid and a solid. Boundary Layer ó Mass Transfer Coefficient. Fluid flow viscosity, Differential mass and momentum balances.	08
2.	Variables K-influencing Dimensionless groups in Mass Transfer ó Analytical, Solution of Mass Transfer co-relations. Mass Transformer between two fluids ó film and Boundary Layer Theories, Surface renewed theory of Mass transformer. Theory of reaction rates. Mass transfer processes, convective mass transfer, concept of mass transfer coefficient.	10
5.	Gas-solid and gas liquid interfacial reaction ó Adsorption ó Slow surface reactions in high temp. metallurgy. Thermodynamics activity of absorbed atomic species. Reaction kinetics , Basic definition and concepts , reaction rate theories, Slag Metal Reaction óElectrochemical Kinetics at High Temp. Nucleation and growth ó Homogeneous and Heterogeneous Nucleation ó Nucleation of CO Bubbles in molten iron and in de-oxidation of steel. Diffusivity and mechanism of diffusion.	14

113

4.	Some special topics Diffusion of gases through porous solid. Role	08
	of Merangoni Effect in Fluid Mass Transfer. Heat Transfer and Reaction Rates. Heat conduction equations and their applications.	
	Convective heat transfer and radiative heat transfer. Total	42

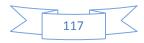
S. No.	Name of the Books	Author(s)	Publisher	Year of Publication
1.	Basic Fluid Mechanics	Kothandaraman C.P. and Rudramoorthy, R.	New Age International Publishers	1998
2.	Fundamentals of Engineering Heat and Mass Transfer	Sachdeva, R C	New Age International Publishers	1996
3.	Fundamentals of heat and Mass Transfer	Kothandaraman C P	New Age International Publishers	1997
4.	Transport Phenomena	Byron Bird R, W E Shawart	John-Wiley & Sons Inc.	1994
5.	Introduction to Fluid Mechanics	Robert, W Fox	John Wiley & Sons	1994
6.	Mechanics of Fluids	Irving H Shames	McGraw Hill Publishing Co.,	1992
7.	Transport Phenomena	Bird R.B, Stewart E.S and Light foot	New York John Wiley & Sons	2002
8.	Transport Phenomena in Metallurgy	Geiger GH and Poirier DR	Addison Wesley Pub. Co	1973
9.	Rate Processes in Metallurgy	Mohanty AK	PHI	2000

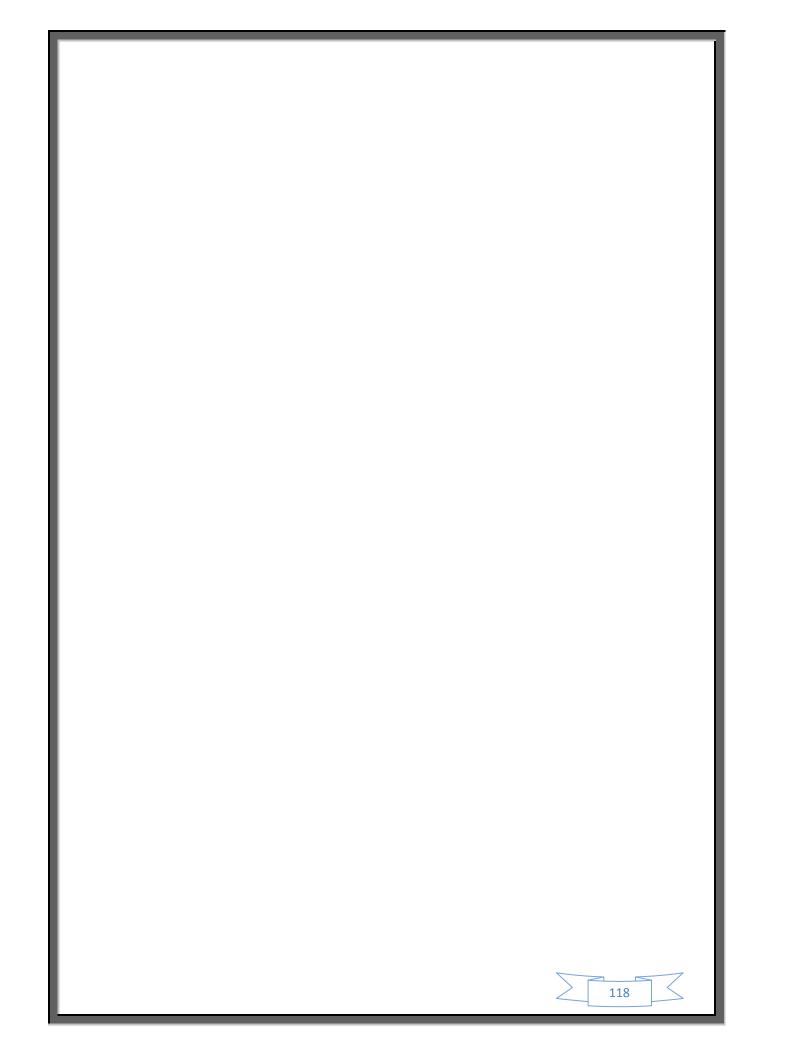

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-709	Course	fitle: Literatu	are Survey of Project Wo	ork
2. Contact Hours : L: 0 ;	T: 2;	P: 0		
3. Examination Duration (Hrs):	Theory: 0	D Pract	ical: 0 0	
4. Relative Weightage: SYNP: 2	5 PRE	2 5		
5. Credits: 0 2 7 th Se	emester: 🗸]	
	Aut	umn Spri	ng	

6. Objective: To carry out the basic work with regard to the literature survey, preparation of design and fabrication of the experimental set up etc, list of required consumable and non-consumable items etc.

S. No.	Particulars					
1.	Each student will undertake a project work, involving complete					
	literature survey, design and fabrication of some working process models,					
	and /or a laboratory experimentation, and presentation of results, under					
	the supervision of a faculty members to be fixed in a meeting of the					
	faculty members of the department keeping in view the students choice of					
	project topic, their aptitude, facilities available and the availability of					
	staff.					
2.						
	The project will be assigned before the conclusion of the 6th semester					
	examination and students will start working on literature survey etc when					
	7th semester classes commence. A write-up and a complete list of					
	consumables and non-consumable items to be needed by each student to					
	complete the project work will be submitted to the teacher concerned in a					
	fairly typed form for assessment and for arranging the materials from the					
	market, if necessary, so that the practical work is started just at the					
	commencement of the 8th semester classes. Each student will submit a					
	complete literature survey of the project work assigned to the concerned supervisor for assessment.					
	supervisor for assessment.					

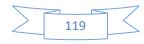


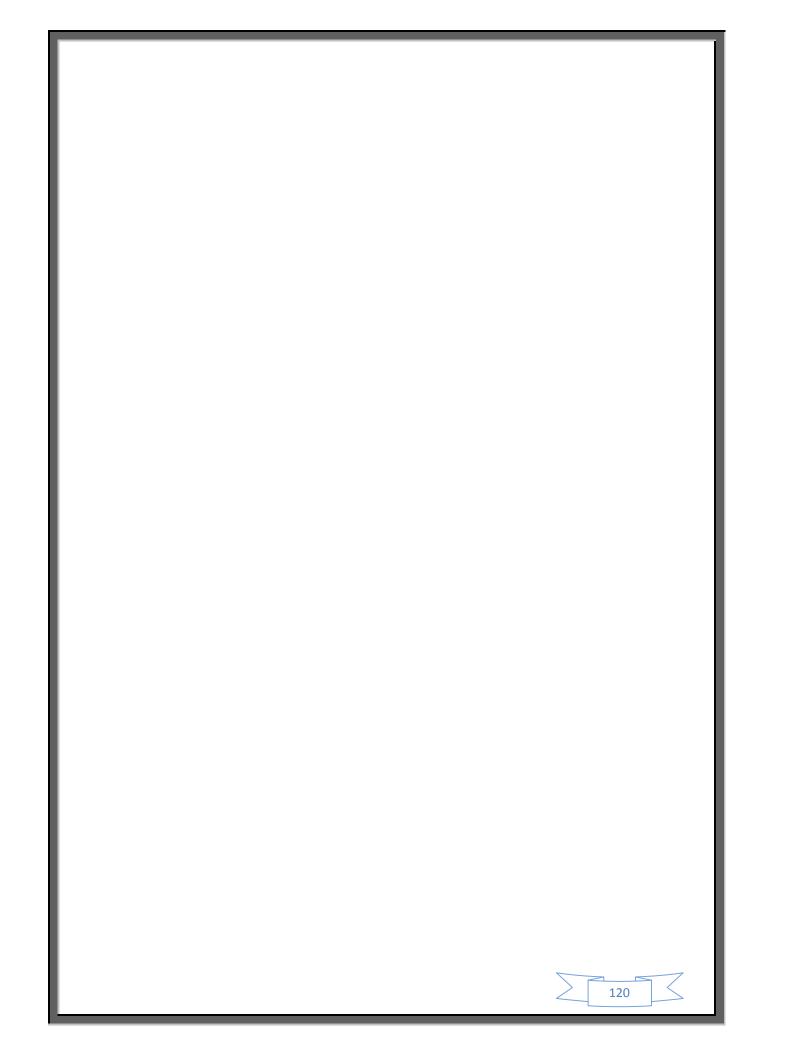

NAME OF DEPARTMENT: Metallurgical & Materials Engineering

1. Subject Code: MME-7	Course Title:	Guided Reading, Group Discussion and Seminar
2. Contact Hours: L: 0;	T: 1; P: 0	
3. Examination Duration (Hrs): Theory: 00	Practical: 0 0
4. Relative Weightage:	GD: 1 5 WUP: [2 0 PRE: 1 5
5. Credits: 0 1	7 th Semester: $$	
	Autumn	Spring

6. Objective: To prepare the students for the group discussions, preparation of talks/seminars etc.

S.No.	Particulars
1.	A co-curricular activity based on guided reading and seminar talks. This will involve a detailed study of a topic of interest production in the candidates own style. Each student will be required to give seminar talks on the subject of interest. The handouts of the talks will be submitted by the student before the talk is delivered. These seminar talks will prepare the students for proper survey of literature, compilation of information so gathered and presentation of the same to the audience. The handouts submitted by the students will be in accordance with the standard of technical papers.
2.	The award of sessional will be based upon the preparation and presentation of seminar talks and performance in the group.

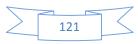

METALLURGICAL AND MATERIALS ENGINEERING DEPARTMENT NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR

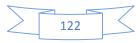

SEMESTER WISE COURSE STRUCTURE

B. Tech. 8th Semester

S.	COURSE NO.	TITLE / SUBJECT	ENGAGEMENT		C R E D I T		DIT	
NO.			L	Т	Р	TH.	Р	TOTAL
1.	MME-801	Foundry Technology	2	1	-	3	-	3
	MME-801 P	Laboratory Practice in Foundry Technology		-	2	-	1	1
2.	MME-802	Corrosion Engineering	2	1	-	3	-	3
	MME-802 P	Laboratory Practice in Corrosion Engineering	-	-	2	-	1	1
3.	MME-803	Failure Analysis	2	1	-	3	-	3
4.	MME-804	Entrepreneurship Development & its Scope in Metallurgy	2	1	-	3	-	3
5.		<u>Elective – II</u> One of the following:	2	1	-	3	-	3
	MME-805E	Polymer Technology	-	-	-	-	-	-
	MME-806E	Composites	-	-	-	-	-	-
	MME-807E	Metallurgy & application of Super alloys	-	-	-	-	-	-
6.	MME 808	Project Work & Project Viva	1	1	6	2	8	10
		TOTAL	11	6	10	17	10	27

L – Lecture T – Tutorial P – Practical TH – Theory



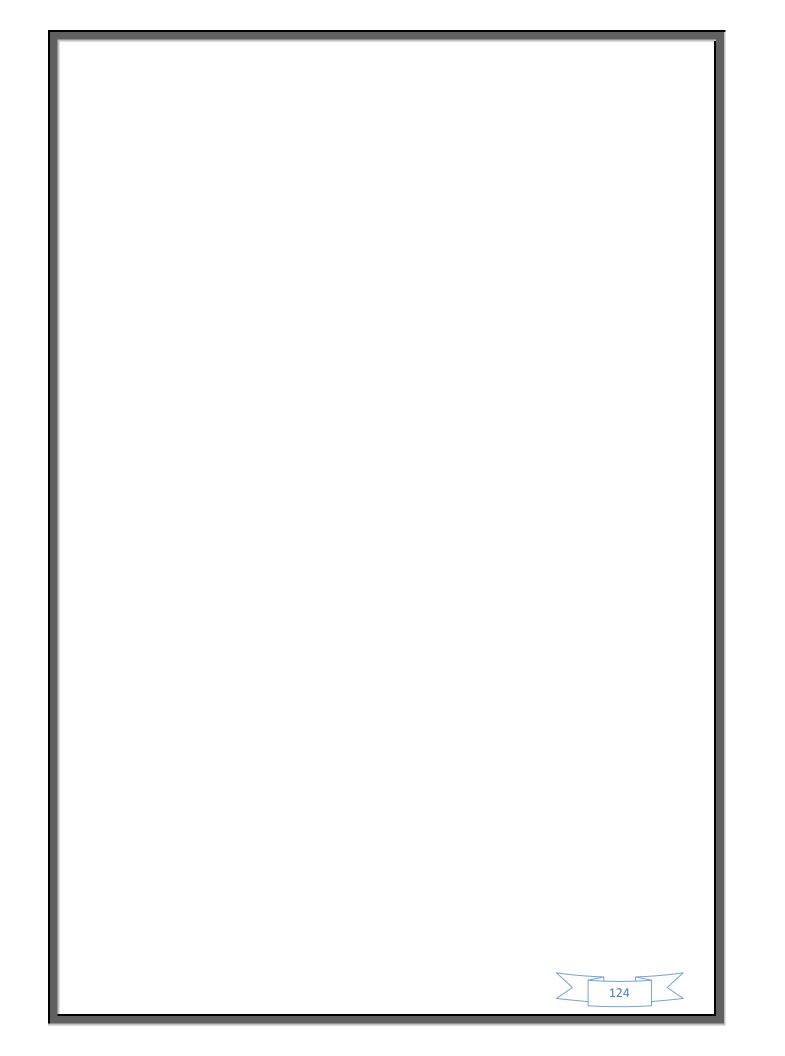

NAME OF DEPARTMENT: Metallurgical & Materials Engineering						
1. Subject Code: MME-801	Course Title: Foundry Technology					
2. Contact Hours : L: 2 ; T: 1;	P: 0					
3. Examination Duration (Hrs): Theory:	0 2 Practical : 0 0					
4. Relative Weightage: M-I: 2 0 M-II	2 0 ASM 1 0 ME: 5 0 PRE: 0 0					
5. Credits: 0 3 8 th Semester:	↓AutumnSpring					

6. Objective: To familiarize with the fundamentals of foundry technology principles, casting processes, equipments etc.

S.No.	Particulars	Contact Hours
1.	Introduction: Application and advantages of types of foundries.	03
2.	Moulding sands-classification and testing, core sands. binding, parting and facing materials, additives.	05
3.	Patterns: Classification and design, pattern allowance.	05
4.	Core making equipment and processes.	03
5.	Gating & risering.	03
6.	Cupola & other Melting furnaces. Manufacture of cast iron, malleable iron, S.G. Iron -Gray cast iron. Classification and distribution of flake size and shape in gray cast iron.	06
7.	Melting, alloying, casting of non-ferrous alloys. Steel foundry practice, moulding and casting. Classification of casting methods and equipments used.	05
8.	Solidification processes-Directional solidification etc. Casting defects.	06
9.	Cleaning, Inspection, quality control and salvaging of castings.	03
10.	Quality control and testing of castings.	03
	Total	42

S.No	Name of the Books	Author(s)	Publisher	Year of Publication s
1.	Principles of Metal Casting	Heine R W., Loper, C.R.Rosenthal	Tata-McGraw Hill Publishing Co Ltd	1995
2.	Principles of Foundry Technology	Jain P.L	Tata McGraw Hill	1995
3.	Metal Casting : Principles and Practice	Ramana Rao T V.	New Age International Publishing	1996
4.	Foundry Engineering		Khanna Tech Publications	1994
5.	ASM Metals hand Book, Vol 15, Casting	Srinivasan N K.	ASM International	2001
6.	Foundry Technology		Butterworths, London	1982
7.	Fundamentals of metal casting technology	Beeley P R. Mukherjee P.C.,	Oxford and IBH Publishing House	1996

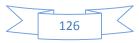
NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code: MME-801 P	Course Title: Laboratory Practice in Foundry Technology
2. Contact Hours : L:0; T: 0;	P: 2
3. Examination Duration (Hrs):	Theory: 0 0 Practical: 0 2
4. Relative Weightage: MSLE: 2	5 ESLE: 2 5
5. Credits: 0 1 8 th S	emester: √
	Autumn Spring

6. Objective: To familiarize with the conduct of various tests on the foundry sands, moulds and castings.

7.List of Experiments

S.No.	Experiments
1.	AFS Sieve analysis of foundry sands.
2.	Sand testing: determination of:
	a. Moisture content
	b. Clay content
	c. Permeability
	d. Flowability
	e. Hot strength
	f. Refractoriness
3.	Mould testing:
	Determination of:
	a. Green strength
	b. Dry strength
	c. Collapsibility
	d. Hardness
	e. Tensile & compression strength
4.	Moulding & casting:
	a. Preparation of moulds
	b. Melting, degassing, fluxing & grain refinement
	c. Making of castings
	d. Inspection & Testing

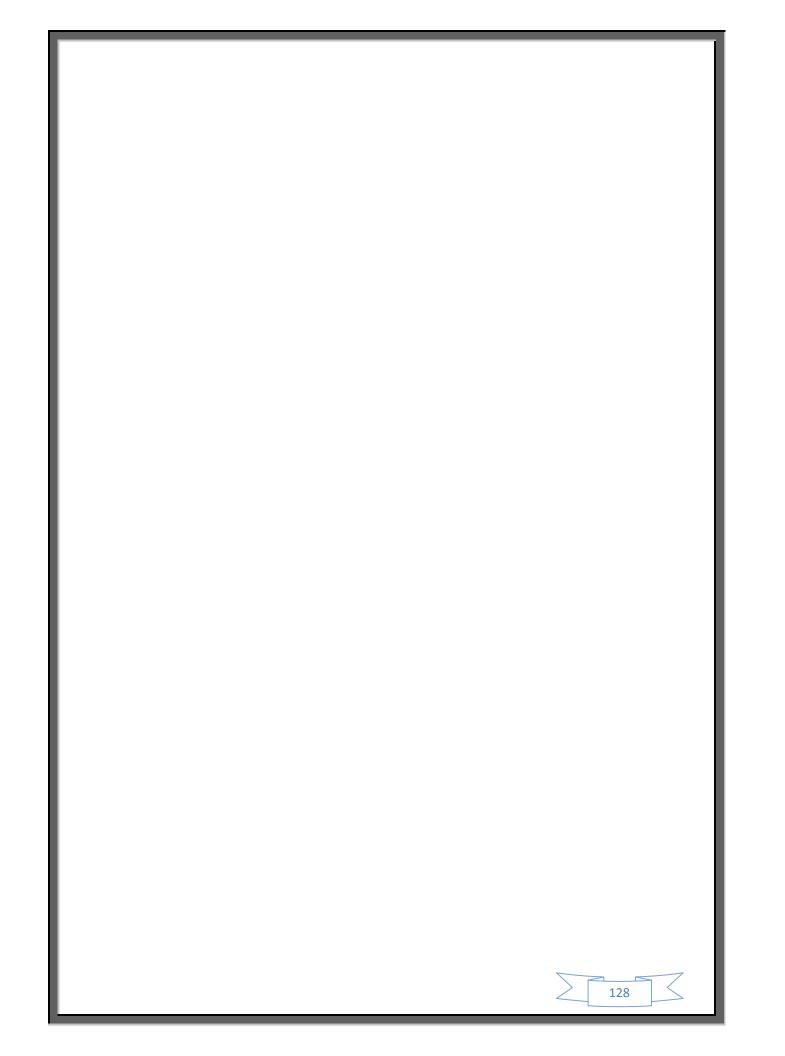

NAME OF DEPARTMENT: Metallurgical & Materials Engineering						
1. Subject Code:MME-802Co	urse Title: Corrosion Engineering					
2. Contact Hours : L: 2; T: 1;	P: 0					
3. Examination Duration (Hrs): Theory:	0 3 Practical : 0 0					
4. Relative Weightage: M-I: 2 0 M-II:	2 0 ASM: 1 0 ME: 5 0 PRE: 0 0					
5. Credits: 0 3 8 th Semester:	↓ √ Autumn Spring					

6. Objective: To familiarize with the basic knowledge of corrosion behaviour of materials and their protection methods.

S.No.	Particulars			
1.	Introduction and review of electrochemical principles, classification of corrosion processes. Factors influencing corrosion rates.	05		
2.	Thermodynamics of high temperature oxidation.	04		
3.	Corrosion in water pipe lines, stress corrosion cracking of constructional materials (like steel in concrete).	05		
4.	Corrosion prevention, inhibitors, passivation, paints and other non- metallic coatings. Metal deposition- Galvanizing, tinning, electroplating, anodizing etc.	08		
5.	Corrosion testing and IS specification.	05		
6.	Corrosion resistant alloys.	04		
7.	Decorative coatings by electroplating. Electro- plating of Cu, Ni, Cr, Ag, Zn, Au and alloys like Cu-Zn, Cu-Sn etc.	08		
8.	Testing of electro-deposits.	03		
	Total	42		

S. No.	Name of the Books	Author(s)	Publisher	Year of Publication
110.				Tubication
1.	Corrosion Engineering	Greene,N.D., M.G.Fontana,	Tata McGraw Hill	2005
2.	CorrosionóFor science and engineering	Kenneth R Trethewey and John Chamberlain	Longman Inc	1996
3.	Metallic corrosion and prevention	Rajnarayan	Oxford Publications,	1988
4.	Corrosion and corrosion control ó An introduction to corrosion science and engineering	Herbert H. Uhlig and R. Winston Revie	John Wiley & Sons	1985
5.	ASM hand book ó Vol 13: Corrosion		ASM International	2001
6.	Principles and prevention of corrosion	Denny A. Jones	Prentice Hall Inc.	1996
7.	Corrosion and corrosion protection handbook	Philip A. Schweitzer	ASM	1983
8.	An introduction to Electro- metallurgy	Sharan & Narain	Standard Publisher	1999

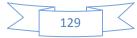

NAME OF DEPARTMENT: Metallurgical & Materials Engineering


1. Subject Code:	MME-802 P	Course Titl	e: Laboratory Practice in Corrosion Engineering
2. Contact Hours:	L:0; T: 0;	P: 2	
3. Examination Du	ration (Hrs): Theo	ry: 0 0	Practical: 0 2
4. Relative Weight	age: MSLE: 2 5	ESLE : 2 5	
5. Credits:	1 8 th Semester:		\checkmark
(Ohisstinus Tes		Autumn	Spring

6. Objective: To gain knowledge about the methods used to evaluate the corrosion characteristics of different materials under different conditions.

7.List of Experiments

S.No:	Experiments
1.	Aqueous corrosion of metals.
2.	To study the effect of cathodic protection on given couple of metallic samples.
3.	To study the influence of various inhibitors on corrosion protection.
4.	High temperature oxidation of alloys.
5.	Electroplating Cu, Ni, Cr, etc.
6.	Anodizing of aluminium.
7.	To study the effect of various atmospheric conditions on degradation of coatings.



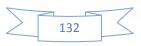
NAME OF DEPARTMENT: Metallurgical &	Materials Engineering
1. Subject Code:MME-803Course	e Title: Failure Analysis
2. Contact Hours : L: 2 ; T: 1;	P: 0
3. Examination Duration (Hrs): Theory:	0 3 Practical : 0 0
4. Relative Weightage: M-I: 2 0 M-II:	2 0 ASM 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 8 th Semester:	✓ Autumn Spring

6. Objective: To understand the basic fundamentals responsible for the failure of materials and to identify the fracture surfaces.

S.No.	Particulars	Contact Hours
1.	Engineering aspects of failure and failure analysis.	02
2.	Fundamental sources of failures.	02
3.	General practice in failure analysis.	06
4.	Toughness and fracture ó mechanics.	06
5.	High and low temp. failures. Mechanisms of and the influence of structural environmental parameters on failure. Identification of types of failure.	10
6.	Service failures of cold formed parts, forgings, castings, weldments.	10
7.	Case studies - failures in power plants, etc.	06
	Total	42

S. No.	Name of the Books/	Author(s)	Publisher	Year of Publication
1.	Deformation and fracture mechanics of Engineering materials	Hertz berg R W	John wily sons inc, New York	1983
2.	Fundamentals of Fracture mechanics	Knott. J.F	Bullerworth London	1973
3.	Fracture Mechanics	Evalds H L and RJH Warnhil	Edward Arnold Ltd, Baltimore,	1984
4.	Applications of Fracture Mechanics for the selection of Materials	Campbel, Underwood J H, and Gerberich W	American Society for Metals, Metals Park Ohio	1982
5.	Metallurgy of Failure Analysis	Das A.K.	Tata McGraw Hill	1992
6.	Analysis of Metallurgical Failures	Colangelo V.A.	John Wiley	1985
7.	Testing of Metallic Materials	Suryanarayana AVK	PHI	1979

NAME OF DEPARTMENT: Metallurgical & Materials H	Engineering
---	-------------


1. Subject Code: MME-804	Course Title: Entrepreneurship Development and its Scope in Metallurgy
2. Contact Hours: L: 2; T: 1;	P: 0
3. Examination Duration (Hrs): Th	eory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2 0	M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 8 th Semes	
	Autumn Spring

AutumnSpring6. Objective:To gain basic knowledge about the procedures and formalities involved in the setting up of industries, marketing management and other related issues.

S. No.	Particulars	Contact Hours
1.	Entrepreneurship Development: Characteristics of entrepreneurs.	04
2.	Entrepreneurship - Risks and rewards, Role of society, self assessment, motivation and human behaviour etc in entrepreneurship development qualities.	08
3.	Business exercises. Forms of business organizations and formation of companies. Procedure and other formalities for setting up of new Industries, incentives, subsidies and concessions available for industries.	10
4.	Various Institutions and Organizations for promotion of industrial development sources of financial assistance.	06
5.	Identification of opportunities for setting industries, Techno- economic feasibility studies, Financial viability, and ratios assessment for fixed and working capitals, project scheduling.	06
6.	Marketing management, consumer behaviour, demand and supply, projections, predictions and forecasts.	04
7.	Industrial laws. Factory wages, and workmen compensation acts. Preparation of a project Report.	04
	Total	42

S. No.	Name of the Books	Author(s)	Publisher	Year of Publication
1.	Entrepreneurship	Robert D Hisrich, Michael P Peters and Dean Shepherd	Tata McGraw Hill	2007
2.	Entrepreneurship ó Successfully Launching New Ventures	Bruee R Barringer and Duane Ireland	Prentice Hall	2006
3.	Entrepreneurship in Action	Pearson Mary Coulter	Prentice Hall of India	2006
4.	Entrepreneurshipó Strategies and Resources	Marc J Dollinger	Pearson Education	2003

NAME OF DEPARTMENT:	Metallurgical & Materials Engineering
1. Subject Code: MME-805E	Course Title: Polymer Technology (Elective-II)
2. Contact Hours : L: 2 ;	T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 0 Practical: 0 3
4. Relative Weightage: M-I 2	0 M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 8 th Se	mester: √ Autumn Spring

6. Objective: To familiarize with the fundamentals of polymers.

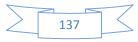
S.No.	Particulars	Contact Hours
1.	Polymer and their characterisation.	05
2.	Polymer chemistry, polymerisation its kinetics and mechanism.	05
3.	Physical and Mechanical properties of polymerisation. Polymer isotics Reactions and their design. Reheology of polymers.	12
4.	Physical properties, Testing and applications of polymeric materials. Polymer processing equipment and unit operations.	10
5.	Introduction to resins, rubber and plastics, their properties and applications. Introduction to inorganic and some special type of polymers.	10
	Total	42

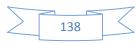
S. No.	Name of the Books	Author(s)	Publisher	Year of Publication
1.	Polymer Science	Gowariker , Viswnathan, Jayadev Sreedhar	New Age International Ltd.	2005
2.	Foundations of Materials Science and Engineering	William F.Smith	McGraw-Hill Inc, New York	1997
3.	Plastics: Materials and processing	Brent Strong A	Prentice-Hall, New Jersey	2000
4.	Polymer Processing	Morton-Jones D.H	Chapman and Hall, New York	1989
5.	Plastic Materials	Brydson J A	Butterworths, London	2004

NAME OF DEPARTMENT: Metall	urgical & Materials Engineering
1. Subject Code: MME-806E	Course Title: Composites
2. Contact Hours : L: 2 ; T	(Elective-II) : 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2	0 M-II: 2 0 ASM: 1 0 ME: 5 0 PRE: 0 0
5. Credits: 0 3 8 th Sem	nester: √ Autumn Spring
	Autumn Spring

6. Objective: To impart basic knowledge about the preparation, characterization, and applications of composite materials.

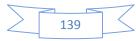
S.No	Particulars	Contact Hours
1.	An introduction to composites.	02
2.	Theoretical and actual strength of solids. Cleavage and shear strength, strength of bulk metals and fibres, etc.	06
3.	Strengthening Mechanisms in composites. Fibre composites, various types of fibres elastic fibres. Elastically and plastically deformable matrix.	06
4.	Effect of fibre orientation on composite strength. Fracture of fibres/ matrix/ composites.	05
5.	Dynamic properties of composite materials - fatigue, creep, high temperature properties, etc.	06
6.	Production of some commercially important composite materials (Resin matrix, ceramic matrix and metal matrix, reinforced plastics, glass fibre and carbon fibre). Directional solidification of eutectic, etc.	06
7.	Joining of composites.	04
8.	Applications of composite materials; civil construction of structure/panels, aerospace industries, automobiles and other surface transport industries, sports components etc.	07
	Total	42

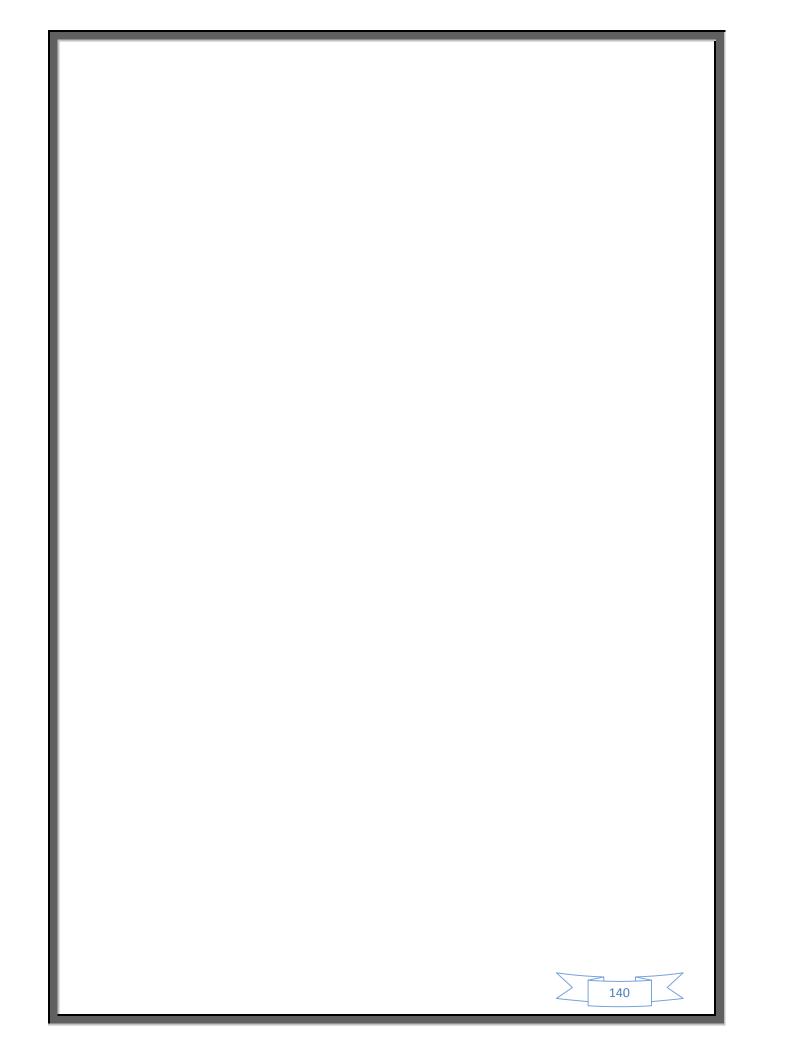

S. No.	Name of the Books	Author(s)	Publisher	Year of Publication
1.	Composite Materials	Chawla K K,	Springer Verlag, New York	1998
2.	Composite Materials: Engineering & Science	Mathews F L and Rawlings R D	Chapman & Hall , London	1994
3.	Ceramic Matrix Composites	Chawla K K	Chapman and Hall, UK	1993
4.	Modern Composite Material	Broutman L J, and Krock	Addison Wesley Publishing Company	1967
5.	Composite Materials: Science and Applications	Deborah Chung D	Springer International, USA	2004
6.	õCompositesö Metals Hand Book Vol.21, 9 th Edition		ASM	1989


NAME OF DEPARTMENT: Meta	allurgical & Materials Engineering
1. Subject Code: MME-807 E	Course Title: Metallurgy and Application of Super Alloys (Elective-II)
2. Contact Hours: L: 2 ;	T: 1; P: 0
3. Examination Duration (Hrs):	Theory: 0 3 Practical: 0 0
4. Relative Weightage: M-I: 2	0 M-II : 2 0 ASM : 1 0 ME : 5 0 PRE : 0 0
5. Credits: $0 3$ 8 th Se	emester: √
	Autumn Spring

6. Objective: To familiarize with various super-alloys and their applications.

S. No	Particulars	Contact Hours
1.	Historical review, Classification of Super alloys based on Fe, Co and Ni, specifications, preparation and physical characteristics of super alloys, Role/effect of alloying elements.	12
2.	Applications of super alloys. Influence of aggressive environments such as those involving chlorine and sulphur.	08
3.	Structural ceramics, their properties and advantages over conventional high temperature materials and super alloys.	10
4.	Structural ceramics based on Oxides (Alumina, Zirconia and Thoria etc) and Non-Oxides (Carbides, Nitrides, Silicides etc). Their synthesis, properties and applications.	10
	Total	40


S. No.	Name of the Books	Author(s)	Publisher	Year of Publications
1.	Powder Metallurgy of Super alloys	G.H. Geissinger		
2.	Modern developments in Powder Metallurgy Vol. 1 & 5	E. N. Aqua , C. I. Whitman	Metal Powder Industries Federation	1985
3.	Super Alloys õA Technical Guideö	Mathew J.Donachie, Stephen J.Donachie	ASM International	2002
4.	Super alloys õ Fundamentals and applicationsö	Roger C.Reed	Cambridge University Press	2006



NAME OF DEPARTMENT: Metallurgical & Materials Engineering
1. Subject Code: MME-808Course Title: Project Work and Viva
2. Contact Hours: L: 1 ; T: 1; P: 8
3. Examination Duration (Hrs): Theory: 0 3 Practical: 0 0
4. Relative Weightage: INTASM: 2 5 PR: 2 0 PRE: 1 5 VV: 1 5 EE: 2 5
5. Credits: $1 0$ 8 th Semester: $$
Autumn Spring

6. Objective: To familiarize the students with the preparation of project proposals, collection of literature, conduct of experimental work, analysis of data and presentation of results etc.

S. No.	Particulars	
1.	Each student will undertake a project work, involving complete literature survey, design and fabrication of some working process models, and /or a laboratory experimentation, and presentation of results, under the supervision of a faculty members to be fixed in a meeting of the faculty members of the department keeping in view the students choice of project topic, their aptitude, facilities available and the availability of staff.	
2.		

