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Wave equation for moving particles

229  

The success of the de Broglie relations in predicting the diffraction of electrons and 
other particles, and the realization that classical standing waves lead to a discrete 

set of frequencies, prompted a search for a wave theory of electrons analogous to the 
wave theory of light. In this electron wave theory, classical mechanics should appear 
as the short-wavelength limit, just as geometric optics is the short-wavelength limit of 
the wave theory of light. The genesis of the correct theory went something like this, 
according to Felix Bloch,1 who was present at the time.

. . . in one of the next colloquia [early in 1926], Schrödinger gave a beauti-
fully clear account of how de Broglie associated a wave with a particle 
and how he [i.e., de Broglie] could obtain the quantization rules . . . by 
demanding that an integer number of waves should be fitted along a 
stationary orbit. When he had finished Debye2 casually remarked that he 
thought this way of talking was rather childish . . . [that to] deal properly 
with waves, one had to have a wave equation.

Toward the end of 1926, Erwin Schrödinger3 published his now-famous wave 
equation, which governs the propagation of matter waves, including those of elec-
trons. A few months earlier, Werner Heisenberg had published a seemingly different 
theory to explain atomic phenomena. In the Heisenberg theory, only measurable 
quantities appear. Dynamical quantities such as energy, position, and momentum are 
represented by matrices, the diagonal elements of which are the possible results of 
measurement. Though the Schrödinger and Heisenberg theories appear to be differ-
ent, it was eventually shown by Schrödinger himself that they were equivalent, in that 
each could be derived from the other. The resulting theory, now called wave mechan-
ics or quantum mechanics, has been amazingly successful. Though its principles may 
seem strange to us whose experiences are limited to the macroscopic world and 
though the mathematics required to solve even the simplest problem is quite involved, 
there seems to be no alternative to describe correctly the experimental results in 
atomic and nuclear physics. In this book we will confine our study to the Schrödinger 
theory because it is easier to learn and is a little less abstract than the Heisenberg theory. 
We will begin by restricting our discussion to problems with a single particle moving 
in one space dimension.
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232 Chapter 6 The Schrödinger Equation

The Schrödinger Equation
We are now ready to postulate the Schrödinger equation for a particle of mass m. In 
one dimension, it has the form

 �  
62

2m
 
�2#�x, t�

�x2 � V�x, t�#�x, t� � i6 
�#�x, t�

�t  6-6

We will now show that this equation is satisfied by a harmonic wave function in the 
special case of a free particle, one on which no net force acts, so that the potential 
energy is constant, V(x, t) � V0. First note that a function of the form cos(kx � Vt) 
does not satisfy this equation because differentiation with respect to time changes the 
cosine to a sine but the second derivative with respect to x gives back a cosine. Simi-
lar reasoning rules out the form sin(kx � Vt). However, the exponential form of the 
harmonic wave function does satisfy the equation. Let

 #�x, t� � Aei�kx�Vt�
 � A�cos�kx � Vt� � i sin�kx � Vt� �  6-7

where A is a constant. Then

�#
�t � � iVA ei�kx�Vt� � � iV#

and

�2#

�x2 � �ik�2A ei�kx�Vt� � �k2#

Substituting these derivatives into the Schrödinger equation with V(x, t) � V0 gives

�62

2m
��k2#� � V0# � i6�� iV�#

or

62k2

2m
� V0 � 6V

which is Equation 6-5.
An important difference between the Schrödinger equation and the classical 

wave equation is the explicit appearance5 of the imaginary number i � ��1�1�2. The 
wave functions that satisfy the Schrödinger equation are not necessarily real, as we 
see from the case of the free-particle wave function of Equation 6-7. Evidently the 
wave function #(x, t) that solves the Schrödinger equation is not a directly measur-
able function like the classical wave function y(x, t) since measurements always yield 
real numbers. However, as we discussed in Section 5-4, the probability of finding the 
electron in some region dx is certainly measurable, just as is the probability that a 
flipped coin will turn up heads. The probability P(x) dx that the electron will be found 
in the volume dx was defined by Equation 5-23 to be equal to #2dx. This probabilistic 
interpretation of # was developed by Max Born and was recognized, over the early 
and formidable objections of both Schrödinger and Einstein, as the appropriate way 
of relating solutions of the Schrödinger equation to the results of physical measure-
ments. The probability that an electron is in the region dx, a real number, can be mea-
sured by counting the fraction of time it is found there in a very large number of 
identical trials. In recognition of the complex nature of #(x, t), we must modify 
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then use this relation to work backward and see how the wave equation for electrons 
must differ from Equation 6-1. The total energy (nonrelativistic) of a particle of 
mass m is

 E �
p2

2m
� V  6-4

where V is the potential energy. Substituting the de Broglie relations in Equation 6-4, 
we obtain

 6V �
62k2

2m
� V  6-5

This differs from Equation 6-2 for a photon because it contains the potential energy V 
and because the angular frequency V does not vary linearly with k. Note that we get a 
factor of V when we differentiate a harmonic wave function with respect to time and a 
factor of k when we differentiate with respect to position. We expect, therefore, that 
the wave equation that applies to electrons will relate the first time derivative to the 
second space derivative and will also involve the potential energy of the electron.

Finally, we require that the wave equation for electrons will be a differential 
equation that is linear in the wave function #(x, t). This ensures that, if #1(x, t) and 
#2(x, t) are both solutions of the wave equation for the same potential energy, then any 
arbitrary linear combination of these solutions is also a solution—that is, #(x, t) � 
a1#1(x, t) � a2#2(x, t) is a solution, with a1 and a2 being arbitrary constants. Such a 
combination is called linear because both #1(x, t) and #2(x, t) appear only to the first 
power. Linearity guarantees that the wave functions will add together to produce con-
structive and destructive interference, which we have seen to be a characteristic of 
matter waves as well as all other wave phenomena. Note in particular that (1) the lin-
earity requirement means that every term in the wave equation must be linear in #(x, t) 
and (2) that any derivative of #(x, t) is linear in #(x, t).4

Erwin Schrödinger. [Courtesy of the 
Niels Bohr Library, American Institute 
of Physics.]
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which can also be written as

F�t� � e�iCt�6 � cos4Ct
6
5 � i sin4Ct

6
5 � cos42P

Ct
h
5 � i sin42P

Ct
h
5  6-17b

Thus, we see that F(t), which describes the time variation of #(x, t), is an oscillatory 
function with frequency f � C�h. However, according to the de Broglie relation 
(Equation 5-1), the frequency of the wave represented by #(x, t) is f � E�h; there-
fore, we conclude that the separation constant C � E, the total energy of the particle, 
and we have

 F�t� � e�iEt�6 6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14 
then becomes, on multiplication by C(x),

 
�62

2m
 
d2C�x�

dx2 � V�x�C�x� � E C�x� 6-18

Equation 6-18 is referred to as the time-independent Schrödinger equation.
The time-independent Schrödinger equation in one dimension is an ordinary dif-

ferential equation in one variable x and is therefore much easier to handle than the 
general form of Equation 6-6. The normalization condition of Equation 6-9 can be 
expressed in terms of the time-independent C(x), since the time dependence of the 
absolute square of the wave function cancels. We have

 #
�x, t�#�x, t� � C
�x�e � iEt�6C�x�e�iEt�6 � C
�x�C�x� 6-19

and Equation 6-9 then becomes

 )
� @

� @

C
�x�C�x�dx � 1 6-20

Conditions for Acceptable Wave Functions
The form of the wave function C(x) that satisfies Equation 6-18 depends on the form 
of the potential energy function V(x). In the next few sections we will study some 
simple but important problems in which V(x) is specified. Our example potentials will 
be approximations to real physical potentials, simplified to make calculations easier. 
In some cases, the slope of the potential energy may be discontinuous, for example, 
V(x) may have one form in one region of space and another form in an adjacent 
region. (This is a useful mathematical approximation to real situations in which V(x) 
varies rapidly over a small region of space, such as at the surface boundary of a 
metal.) The procedure in such cases is to solve the Schrödinger equation separately in 
each region of space and then require that the solutions join smoothly at the point of 
discontinuity.

Since the probability of finding a particle cannot vary discontinuously from 
point to point, the wave function C(x) must be continuous.9 Since the Schrödinger 
equation involves the second derivative d2C�dx2 � C�, the first derivative C� (which 
is the slope) must also be continuous; that is, the graph of C(x) versus x must be 
smooth. (In a special case in which the potential energy becomes infinite, this restric-
tion is relaxed. Since no particle can have infinite potential energy, C(x) must be zero 
in regions where V(x) is infinite. Then at the boundary of such a region, C� may be 
discontinuous.)
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If either C(x) or dC�dx were not finite or not single valued, the same would be 
true of #(x, t) and d #�dx. As we will see shortly, the predictions of wave mechanics 
regarding the results of measurements involve both of those quantities and would thus 
not necessarily predict finite or definite values for real physical quantities. Such 
results would not be acceptable since measurable quantities, such as angular momentum 
and position, are never infinite or multiple valued. A final restriction on the form of 
the wave function C(x) is that in order to obey the normalization condition, C(x) must 
approach zero sufficiently fast as x 4 {@ so that normalization is preserved. For 
future reference, we may summarize the conditions that the wave function C(x) must 
meet in order to be acceptable as follows:

1. C(x) must exist and satisfy the Schrödinger equation.

2. C(x) and dC�dx must be continuous.

3. C(x) and dC�dx must be finite.

4. C(x) and dC�dx must be single valued.

5. C(x) 4 0 fast enough as x 4{@ so that the normalization integral, Equation 6-20,
remains bounded.

Questions

1. Like the classical wave equation, the Schrödinger equation is linear. Why is this 
important?

2. There is no factor i � ��1�1�2 in Equation 6-18. Does this mean that C(x) must 
be real?

3. Why must the electric field J(x, t) be real? Is it possible to find a nonreal wave 
function that satisfies the classical wave equation?

4. Describe how the de Broglie hypothesis enters into the Schrödinger wave 
equation.

5. What would be the effect on the Schrödinger equation of adding a constant rest 
energy for a particle with mass to the total energy E in the de Broglie relation 
f � E�h?

6. Describe in words what is meant by normalization of the wave function.

EXAMPLE 6-1 A Solution to the Schrödinger Equation  Show that for a free 
particle of mass m moving in one dimension the function C(x) � A sin kx � B cos kx 
is a solution to the time-independent Schrödinger equation for any values of the 
constants A and B.

SOLUTION
A free particle has no net force acting on it, for example, V(x) � 0, in which case 
the kinetic energy equals the total energy. Thus, p � 6k � �2mE�1�2. Differentiat-
ing C(x) gives

dC

dx
� kA cos kx � kB sin kx
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Classical Picture
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and differentiating again,

 
d2C

dx2 � �k2A sin kx � k2B cos kx

 � �k2�A sin kx � B cos kx� � �k2 C�x�
Substituting into Equation 6-18,

�62

2m
� ��k2� �A sin kx � B cos kx� � � E�A sin kx � B cos kx�

62k2

2m
 C�x� � E C�x�

and, since 62k2 � 2mE, we have

E C�x� � E C�x�
and the given C(x) is a solution of Equation 6-18.

6-2 The Infinite Square Well 
A problem that provides several illustrations of the properties of wave functions 
and is also one of the easiest problems to solve using the time-independent, one-
dimensional Schrödinger equation is that of the infinite-square well, sometimes called 
the particle in a box. A macroscopic example is a bead free to move on a frictionless 
wire between two massive stops clamped to the wire. We could also build such a 
“box” for an electron using electrodes and grids in an evacuated tube as illustrated in 
Figure 6-1a. The walls of the box are provided by the increasing potential between 
the grids G and the electrode C as shown in Figures 6-1b and c. The walls can be 

Potential
energy

C CG G x

(c )

(a )

Potential
energy

C CG

C C

VV

G G

G x

(b )

Electron

––

FIGURE 6-1 (a) The electron 
placed between the two sets 
of electrodes C and grids G 
experiences no force in the 
region between the grids, 
which are at ground potential. 
However, in the regions 
between each C and G is a 
repelling electric field whose 
strength depends on the 
magnitude of V. (b) If V is 
small, then the electron’s 
potential energy versus x has 
low, sloping “walls.” (c) If
V is large, the “walls” 
become very high and steep, 
becoming infinitely high for 
V 4 @.
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made arbitrarily high and steep by increasing the potential V and reducing the separa-
tion between each grid-electrode pair. In the limit such a potential energy function 
looks like that in Figure 6-2, which is a graph of the potential energy of an infinite 
square well. For this problem the potential energy is of the form

V�x� � 0  0 � x � L
V�x� � @  x � 0 and x � L

 6-21

Although such a potential is clearly artificial, the problem is worth careful study for 
several reasons: (1) exact solutions to the Schrödinger equation can be obtained with-
out the difficult mathematics that usually accompanies its solution for more realistic 
potential functions; (2) the problem is closely related to the vibrating-string problem 
familiar in classical physics; (3) it illustrates many of the important features of all 
quantum-mechanical problems; and finally, (4) this potential is a relatively good 
approximation to some real situations, for example, the motion of a free electron 
inside a metal.

Since the potential energy is infinite outside the well, the wave function is 
required to be zero there; that is, the particle must be inside the well. (As we proceed 
through this and other problems, keep in mind Born’s interpretation: the probability 
density of the particle’s position is proportional to U C U 2.) We then need only to solve 
Equation 6-18 for the region inside the well 0 � x � L, subject to the condition that 
since the wave function must be continuous, C(x) must be zero at x � 0 and x � L. 
Such a condition on the wave function at a boundary (here, the discontinuity of the 
potential energy function) is called a boundary condition. We will see that, mathemat-
ically, it is the boundary conditions together with the requirement that C(x) 4  0 as
x 4  {@ that leads to the quantization of energy. A classical example is that of a 
vibrating string fixed at both ends. In that case the wave function y(x, t) is the dis-
placement of the string. If the string is fixed at x � 0 and x � L, we have the same 
boundary condition on the vibrating-string wave function: namely, that y(x, t) be zero 
at x � 0 and x � L. These boundary conditions lead to discrete allowed frequencies of 
vibration of the string. It was this quantization of frequencies (which always occurs 
for standing waves in classical physics), along with de Broglie’s hypothesis, that 
motivated Schrödinger to look for a wave equation for electrons.

The standing-wave condition for waves on a string of length L fixed at both ends 
is that an integer number of half wavelengths fit into the length L:

 n 
L

2
� L  n � 1, 2, 3, c  6-22

We will see below that the same condition follows from the solution of the Schrödinger 
equation for a particle in an infinite square well. Since the wavelength is related to the 
momentum of the particle by the de Broglie relation p � h�L and the total energy of 
the particle in the well is just the kinetic energy p2�2m (see Figure 6-2), this quantum 
condition on the wavelength implies that the energy is quantized and the allowed val-
ues are given by

 E �
p2

2m
�

h2

2mL2 �
h2

2m�2L�n�2 � n2 
h2

8mL2 6-23

Since the energy depends on the integer n, it is customary to label it En. In terms of 
6 � h�2P, the energy is given by

 En � n2 
P262

2mL2 � n2 E1  n � 1, 2, 3, c  6-24

FIGURE 6-2 Infinite square 
well potential energy. For 
0 � x � L, the potential 
energy V(x) is zero. Outside 
this region, V(x) is infinite. 
The particle is confined to the 
region in the well 0 � x � L.

L0

V(x )

x
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approximation to some real situations, for example, the motion of a free electron 
inside a metal.

Since the potential energy is infinite outside the well, the wave function is 
required to be zero there; that is, the particle must be inside the well. (As we proceed 
through this and other problems, keep in mind Born’s interpretation: the probability 
density of the particle’s position is proportional to U C U 2.) We then need only to solve 
Equation 6-18 for the region inside the well 0 � x � L, subject to the condition that 
since the wave function must be continuous, C(x) must be zero at x � 0 and x � L. 
Such a condition on the wave function at a boundary (here, the discontinuity of the 
potential energy function) is called a boundary condition. We will see that, mathemat-
ically, it is the boundary conditions together with the requirement that C(x) 4  0 as
x 4  {@ that leads to the quantization of energy. A classical example is that of a 
vibrating string fixed at both ends. In that case the wave function y(x, t) is the dis-
placement of the string. If the string is fixed at x � 0 and x � L, we have the same 
boundary condition on the vibrating-string wave function: namely, that y(x, t) be zero 
at x � 0 and x � L. These boundary conditions lead to discrete allowed frequencies of 
vibration of the string. It was this quantization of frequencies (which always occurs 
for standing waves in classical physics), along with de Broglie’s hypothesis, that 
motivated Schrödinger to look for a wave equation for electrons.

The standing-wave condition for waves on a string of length L fixed at both ends 
is that an integer number of half wavelengths fit into the length L:

 n 
L

2
� L  n � 1, 2, 3, c  6-22

We will see below that the same condition follows from the solution of the Schrödinger 
equation for a particle in an infinite square well. Since the wavelength is related to the 
momentum of the particle by the de Broglie relation p � h�L and the total energy of 
the particle in the well is just the kinetic energy p2�2m (see Figure 6-2), this quantum 
condition on the wavelength implies that the energy is quantized and the allowed val-
ues are given by

 E �
p2

2m
�

h2

2mL2 �
h2

2m�2L�n�2 � n2 
h2

8mL2 6-23

Since the energy depends on the integer n, it is customary to label it En. In terms of 
6 � h�2P, the energy is given by

 En � n2 
P262

2mL2 � n2 E1  n � 1, 2, 3, c  6-24

FIGURE 6-2 Infinite square 
well potential energy. For 
0 � x � L, the potential 
energy V(x) is zero. Outside 
this region, V(x) is infinite. 
The particle is confined to the 
region in the well 0 � x � L.

L0

V(x )

x
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where E1 is the lowest allowed energy10 and is given by

 E1 �
P262

2mL2 6-25

We now derive this result from the time-independent Schrödinger equation (Equa-
tion 6-18), which for V(x) � 0 is

�  
62

2m
 
d2C�x�

dx2 � EC�x�
or

 C��x� � �  
2mE
62  C(x) � �k2C(x) 6-26

where we have substituted the square of the wave number k, since

 k2 � 4 p
6
5 2

�
2mE
62  6-27

and we have written C��x� for the second derivative d2C�x� �dx2. Equation 6-26 has 
solutions of the form

 C�x� � A sin kx 6-28 a

and

 C�x� � B cos kx 6-28b

where A and B are constants. The boundary condition C(x) � 0 at x � 0 rules out the 
cosine solution (Equation 6-28b) because cos 0 � 1, so B must equal zero. The bound-
ary condition C(x) � 0 at x � L gives

 C�L� � A sin kL � 0 6-29

This condition is satisfied if kL is any integer times P, that is, if k is restricted to the 
values kn given by

 kn � n 
P

L
  n � 1, 2, 3, c  6-30

If we write the wave number k in terms of the wavelength L � 2P�k, we see that 
Equation 6-30 is the same as Equation 6-22 for standing waves on a string. The quan-
tized energy values, or energy eigenvalues, are found from Equation 6-27, replacing k 
by kn as given by Equation 6-30. We thus have

En �
62k2

n

2m
� n2 

62P2

2mL2 � n2E1

which is the same as Equation 6-24. Figure 6-3 shows the energy-level diagram and 
the potential energy function for the infinite square well potential.

The constant A in the wave function of Equation 6-28a is determined by the nor-
malization condition.

 )
� @

� @

C
nCn dx � )
L

0

A2
n sin24 nPx

L
5dx � 1 6-31
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which can also be written as

F�t� � e�iCt�6 � cos4Ct
6
5 � i sin4Ct

6
5 � cos42P

Ct
h
5 � i sin42P

Ct
h
5  6-17b

Thus, we see that F(t), which describes the time variation of #(x, t), is an oscillatory 
function with frequency f � C�h. However, according to the de Broglie relation 
(Equation 5-1), the frequency of the wave represented by #(x, t) is f � E�h; there-
fore, we conclude that the separation constant C � E, the total energy of the particle, 
and we have

 F�t� � e�iEt�6 6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14 
then becomes, on multiplication by C(x),

 
�62

2m
 
d2C�x�

dx2 � V�x�C�x� � E C�x� 6-18

Equation 6-18 is referred to as the time-independent Schrödinger equation.
The time-independent Schrödinger equation in one dimension is an ordinary dif-

ferential equation in one variable x and is therefore much easier to handle than the 
general form of Equation 6-6. The normalization condition of Equation 6-9 can be 
expressed in terms of the time-independent C(x), since the time dependence of the 
absolute square of the wave function cancels. We have

 #
�x, t�#�x, t� � C
�x�e � iEt�6C�x�e�iEt�6 � C
�x�C�x� 6-19

and Equation 6-9 then becomes

 )
� @

� @

C
�x�C�x�dx � 1 6-20

Conditions for Acceptable Wave Functions
The form of the wave function C(x) that satisfies Equation 6-18 depends on the form 
of the potential energy function V(x). In the next few sections we will study some 
simple but important problems in which V(x) is specified. Our example potentials will 
be approximations to real physical potentials, simplified to make calculations easier. 
In some cases, the slope of the potential energy may be discontinuous, for example, 
V(x) may have one form in one region of space and another form in an adjacent 
region. (This is a useful mathematical approximation to real situations in which V(x) 
varies rapidly over a small region of space, such as at the surface boundary of a 
metal.) The procedure in such cases is to solve the Schrödinger equation separately in 
each region of space and then require that the solutions join smoothly at the point of 
discontinuity.

Since the probability of finding a particle cannot vary discontinuously from 
point to point, the wave function C(x) must be continuous.9 Since the Schrödinger 
equation involves the second derivative d2C�dx2 � C�, the first derivative C� (which 
is the slope) must also be continuous; that is, the graph of C(x) versus x must be 
smooth. (In a special case in which the potential energy becomes infinite, this restric-
tion is relaxed. Since no particle can have infinite potential energy, C(x) must be zero 
in regions where V(x) is infinite. Then at the boundary of such a region, C� may be 
discontinuous.)
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where E1 is the lowest allowed energy10 and is given by

 E1 �
P262

2mL2 6-25

We now derive this result from the time-independent Schrödinger equation (Equa-
tion 6-18), which for V(x) � 0 is

�  
62

2m
 
d2C�x�

dx2 � EC�x�
or

 C��x� � �  
2mE
62  C(x) � �k2C(x) 6-26

where we have substituted the square of the wave number k, since

 k2 � 4 p
6
5 2

�
2mE
62  6-27

and we have written C��x� for the second derivative d2C�x� �dx2. Equation 6-26 has 
solutions of the form

 C�x� � A sin kx 6-28 a

and

 C�x� � B cos kx 6-28b

where A and B are constants. The boundary condition C(x) � 0 at x � 0 rules out the 
cosine solution (Equation 6-28b) because cos 0 � 1, so B must equal zero. The bound-
ary condition C(x) � 0 at x � L gives

 C�L� � A sin kL � 0 6-29

This condition is satisfied if kL is any integer times P, that is, if k is restricted to the 
values kn given by

 kn � n 
P

L
  n � 1, 2, 3, c  6-30

If we write the wave number k in terms of the wavelength L � 2P�k, we see that 
Equation 6-30 is the same as Equation 6-22 for standing waves on a string. The quan-
tized energy values, or energy eigenvalues, are found from Equation 6-27, replacing k 
by kn as given by Equation 6-30. We thus have

En �
62k2

n

2m
� n2 

62P2

2mL2 � n2E1

which is the same as Equation 6-24. Figure 6-3 shows the energy-level diagram and 
the potential energy function for the infinite square well potential.

The constant A in the wave function of Equation 6-28a is determined by the nor-
malization condition.
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Since the wave function is zero in regions of space where the potential energy is infi-
nite, the contributions to the integral from �@ to 0 and from L to �@ will both be 
zero. Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain 
An � �2�L�1�2 independent of n. The normalized wave function solutions for this 
problem, also called eigenfunctions, are then

 Cn�x� � � 2
L

 sin 
nPx

L
  n � 1, 2, 3,c  6-32

These wave functions are exactly the same as the standing-wave functions yn(x) for 
the vibrating-string problem. The wave functions and the probability distribution 
functions Pn(x) are sketched in Figure 6-4 for the lowest energy state n � 1, called the 
ground state, and for the first two excited states, n � 2 and n � 3. (Since these wave 
functions are real, Pn�x� � C
nCn � C2

n.) Notice in Figure 6-4 that the maximum 
amplitudes of each of the Cn(x) are the same, �2�L�1�2, as are those of Pn(x), 2�L. 
Note, too, that both Cn(x) and Pn(x) extend to {@. They just happen to be zero for
x � 0 and x � L in this case.

The number n in the equations above is called a quantum number. It specifies 
both the energy and the wave function. Given any value of n, we can immediately 
write down the wave function and the energy of the system. The quantum number n 
occurs because of the boundary conditions C(x) � 0 at x � 0 and x � L. We will see 
in Section 7-1 that for problems in three dimensions, three quantum numbers arise, 
one associated with boundary conditions on each coordinate.

FIGURE 6-3 Graph of energy versus x for a particle in an infinitely deep well. The potential 
energy V(x) is shown with the colored lines. The set of allowed values for the particle’s total 
energy En as given by Equation 6-24 form the energy-level diagram for the infinite square well 
potential. Classically, a particle can have any value of energy. Quantum mechanically, only 
the values given by En � n2�62P2�2mL2� yield well-behaved solutions of the Schrödinger 
equation. As we become more familiar with energy-level diagrams, the x axis will be omitted.
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made arbitrarily high and steep by increasing the potential V and reducing the separa-
tion between each grid-electrode pair. In the limit such a potential energy function 
looks like that in Figure 6-2, which is a graph of the potential energy of an infinite 
square well. For this problem the potential energy is of the form

V�x� � 0  0 � x � L
V�x� � @  x � 0 and x � L

 6-21

Although such a potential is clearly artificial, the problem is worth careful study for 
several reasons: (1) exact solutions to the Schrödinger equation can be obtained with-
out the difficult mathematics that usually accompanies its solution for more realistic 
potential functions; (2) the problem is closely related to the vibrating-string problem 
familiar in classical physics; (3) it illustrates many of the important features of all 
quantum-mechanical problems; and finally, (4) this potential is a relatively good 
approximation to some real situations, for example, the motion of a free electron 
inside a metal.

Since the potential energy is infinite outside the well, the wave function is 
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density of the particle’s position is proportional to U C U 2.) We then need only to solve 
Equation 6-18 for the region inside the well 0 � x � L, subject to the condition that 
since the wave function must be continuous, C(x) must be zero at x � 0 and x � L. 
Such a condition on the wave function at a boundary (here, the discontinuity of the 
potential energy function) is called a boundary condition. We will see that, mathemat-
ically, it is the boundary conditions together with the requirement that C(x) 4  0 as
x 4  {@ that leads to the quantization of energy. A classical example is that of a 
vibrating string fixed at both ends. In that case the wave function y(x, t) is the dis-
placement of the string. If the string is fixed at x � 0 and x � L, we have the same 
boundary condition on the vibrating-string wave function: namely, that y(x, t) be zero 
at x � 0 and x � L. These boundary conditions lead to discrete allowed frequencies of 
vibration of the string. It was this quantization of frequencies (which always occurs 
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The standing-wave condition for waves on a string of length L fixed at both ends 
is that an integer number of half wavelengths fit into the length L:

 n 
L

2
� L  n � 1, 2, 3, c  6-22

We will see below that the same condition follows from the solution of the Schrödinger 
equation for a particle in an infinite square well. Since the wavelength is related to the 
momentum of the particle by the de Broglie relation p � h�L and the total energy of 
the particle in the well is just the kinetic energy p2�2m (see Figure 6-2), this quantum 
condition on the wavelength implies that the energy is quantized and the allowed val-
ues are given by

 E �
p2

2m
�

h2

2mL2 �
h2

2m�2L�n�2 � n2 
h2

8mL2 6-23

Since the energy depends on the integer n, it is customary to label it En. In terms of 
6 � h�2P, the energy is given by

 En � n2 
P262

2mL2 � n2 E1  n � 1, 2, 3, c  6-24

FIGURE 6-2 Infinite square 
well potential energy. For 
0 � x � L, the potential 
energy V(x) is zero. Outside 
this region, V(x) is infinite. 
The particle is confined to the 
region in the well 0 � x � L.

L0

V(x )
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Since the wave function is zero in regions of space where the potential energy is infi-
nite, the contributions to the integral from �@ to 0 and from L to �@ will both be 
zero. Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain 
An � �2�L�1�2 independent of n. The normalized wave function solutions for this 
problem, also called eigenfunctions, are then

 Cn�x� � � 2
L

 sin 
nPx

L
  n � 1, 2, 3,c  6-32

These wave functions are exactly the same as the standing-wave functions yn(x) for 
the vibrating-string problem. The wave functions and the probability distribution 
functions Pn(x) are sketched in Figure 6-4 for the lowest energy state n � 1, called the 
ground state, and for the first two excited states, n � 2 and n � 3. (Since these wave 
functions are real, Pn�x� � C
nCn � C2

n.) Notice in Figure 6-4 that the maximum 
amplitudes of each of the Cn(x) are the same, �2�L�1�2, as are those of Pn(x), 2�L. 
Note, too, that both Cn(x) and Pn(x) extend to {@. They just happen to be zero for
x � 0 and x � L in this case.

The number n in the equations above is called a quantum number. It specifies 
both the energy and the wave function. Given any value of n, we can immediately 
write down the wave function and the energy of the system. The quantum number n 
occurs because of the boundary conditions C(x) � 0 at x � 0 and x � L. We will see 
in Section 7-1 that for problems in three dimensions, three quantum numbers arise, 
one associated with boundary conditions on each coordinate.

FIGURE 6-3 Graph of energy versus x for a particle in an infinitely deep well. The potential 
energy V(x) is shown with the colored lines. The set of allowed values for the particle’s total 
energy En as given by Equation 6-24 form the energy-level diagram for the infinite square well 
potential. Classically, a particle can have any value of energy. Quantum mechanically, only 
the values given by En � n2�62P2�2mL2� yield well-behaved solutions of the Schrödinger 
equation. As we become more familiar with energy-level diagrams, the x axis will be omitted.
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Comparison with Classical Results
Let us compare our quantum-mechanical solution of this problem with the classical 
solution. In classical mechanics, if we know the potential energy function V(x), we 
can find the force from Fx � �dV�dx and thereby obtain the acceleration 
ax � d2x�dt2 from Newton’s second law. We can then find the position x as a func-
tion of time t if we know the initial position and velocity. In this problem there is no 
force when the particle is between the walls of the well because V � 0 there. The par-
ticle therefore moves with constant speed in the well. Near the edge of the well the 
potential energy rises discontinuously to infinity—we may describe this as a very 
large force that acts over a very short distance and turns the particle around at the wall 
so that it moves away with its initial speed. Any speed, and therefore any energy, is 
permitted classically. The classical description breaks down because, according to the 
uncertainty principle, we can never precisely specify both the position and momen-
tum (and therefore velocity) at the same time. We can therefore never specify the ini-
tial conditions precisely and cannot assign a definite position and momentum to the 
particle. Of course, for a macroscopic particle moving in a macroscopic box, the 
energy is much larger than E1 of Equation 6-25, and the minimum uncertainty of 
momentum, which is of the order of 6�L, is much less than the momentum and less 
than experimental uncertainties. Then the difference in energy between adjacent 
states will be a small fraction of the total energy, quantization will be unnoticed, and 
the classical description will be adequate.11

Let us also compare the classical prediction for the distribution of measure-
ments of position with those from our quantum-mechanical solution. Classically, the 
probability of finding the particle in some region dx is proportional to the time spent 
in dx, which is dx�v, where v is the speed. Since the speed is constant, the classical 
distribution function is just a constant inside the well. The normalized classical distri-
bution function is

PC�x� �
1
L

FIGURE 6-4 Wave functions 
Cn(x) and probability densities 
Pn�x� � C2

n�x� for n � 1, 2, 
and 3 for the infinite square 
well potential. Though not 
shown, Cn(x) � 0 for x � 0 
and x � L.
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In Figure 6-4 we see that for the lowest energy states the quantum distribution function 
is very different from this. According to Bohr’s correspondence principle, the quantum 
distributions should approach the classical distribution when n is large, that is, at large 
energies. For any state n, the quantum distribution has n peaks. The distribution for
n � 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if 
there are many peaks in a small distance $�x, only the average value will be observed. 
But the average value of sin2kn x over one or more cycles is 1/2. Thus�C2

n�x� � av � 6 2
L

 sin2 knx 7
av

�
2
L

 
1
2
�

1
L

which is the same as the classical distribution.

The Complete Wave Function
The complete wave function, including its time dependence, is found by multiplying 
the space part by

e�iVt � e�i�En�6�t
according to Equation 6-17. As mentioned previously, a wave function corresponding 
to a single energy oscillates with angular frequency Vn � En�6, but the probability 
distribution U #n�x, t� U 2 is independent of time. This is the wave-mechanical justifica-
tion for calling such a state a stationary state or eigenstate, as we have done earlier. It 
is instructive to look at the complete wave function for a particular state n:

#n�x, t� � � 2
L

 sin knx e�iVnt

If we use the identity

sin knx �
�eiknx � e�iknx�

2i

we can write this wave function as

#n�x, t� �
1
2i� 2

L
�ei�knx�Vnt� � e�i�knx�Vnt� �

FIGURE 6-5 Probability distribution for n � 10 for the infinite square well potential. The 
dashed line is the classical probability density P � 1�L, which is equal to the quantum-
mechanical distribution averaged over a region $�x containing several oscillations. A physical 
measurement with resolution $�x will yield the classical result if n is so large that C2(x) has 
many oscillations in $�x.

0 ��x ��L

0 L x

�2

Quantum-mechanical
distribution

Classical distribution

1––
L

P = 

TIPLER_06_229-276hr.indd   242 8/22/11   11:57 AM

Infinite potential well



Introduction of Quantum Mechanics  : Dr Prince A Ganai

Infinite potential well

The complete Wave function

242 Chapter 6 The Schrödinger Equation

In Figure 6-4 we see that for the lowest energy states the quantum distribution function 
is very different from this. According to Bohr’s correspondence principle, the quantum 
distributions should approach the classical distribution when n is large, that is, at large 
energies. For any state n, the quantum distribution has n peaks. The distribution for
n � 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if 
there are many peaks in a small distance $�x, only the average value will be observed. 
But the average value of sin2kn x over one or more cycles is 1/2. Thus�C2

n�x� � av � 6 2
L

 sin2 knx 7
av

�
2
L

 
1
2
�

1
L

which is the same as the classical distribution.

The Complete Wave Function
The complete wave function, including its time dependence, is found by multiplying 
the space part by

e�iVt � e�i�En�6�t
according to Equation 6-17. As mentioned previously, a wave function corresponding 
to a single energy oscillates with angular frequency Vn � En�6, but the probability 
distribution U #n�x, t� U 2 is independent of time. This is the wave-mechanical justifica-
tion for calling such a state a stationary state or eigenstate, as we have done earlier. It 
is instructive to look at the complete wave function for a particular state n:

#n�x, t� � � 2
L

 sin knx e�iVnt

If we use the identity

sin knx �
�eiknx � e�iknx�

2i

we can write this wave function as

#n�x, t� �
1
2i� 2

L
�ei�knx�Vnt� � e�i�knx�Vnt� �

FIGURE 6-5 Probability distribution for n � 10 for the infinite square well potential. The 
dashed line is the classical probability density P � 1�L, which is equal to the quantum-
mechanical distribution averaged over a region $�x containing several oscillations. A physical 
measurement with resolution $�x will yield the classical result if n is so large that C2(x) has 
many oscillations in $�x.

0 ��x ��L

0 L x

�2

Quantum-mechanical
distribution

Classical distribution

1––
L

P = 

TIPLER_06_229-276hr.indd   242 8/22/11   11:57 AM

242 Chapter 6 The Schrödinger Equation

In Figure 6-4 we see that for the lowest energy states the quantum distribution function 
is very different from this. According to Bohr’s correspondence principle, the quantum 
distributions should approach the classical distribution when n is large, that is, at large 
energies. For any state n, the quantum distribution has n peaks. The distribution for
n � 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if 
there are many peaks in a small distance $�x, only the average value will be observed. 
But the average value of sin2kn x over one or more cycles is 1/2. Thus�C2

n�x� � av � 6 2
L

 sin2 knx 7
av

�
2
L

 
1
2
�

1
L

which is the same as the classical distribution.

The Complete Wave Function
The complete wave function, including its time dependence, is found by multiplying 
the space part by

e�iVt � e�i�En�6�t
according to Equation 6-17. As mentioned previously, a wave function corresponding 
to a single energy oscillates with angular frequency Vn � En�6, but the probability 
distribution U #n�x, t� U 2 is independent of time. This is the wave-mechanical justifica-
tion for calling such a state a stationary state or eigenstate, as we have done earlier. It 
is instructive to look at the complete wave function for a particular state n:

#n�x, t� � � 2
L

 sin knx e�iVnt

If we use the identity

sin knx �
�eiknx � e�iknx�

2i

we can write this wave function as

#n�x, t� �
1
2i� 2

L
�ei�knx�Vnt� � e�i�knx�Vnt� �

FIGURE 6-5 Probability distribution for n � 10 for the infinite square well potential. The 
dashed line is the classical probability density P � 1�L, which is equal to the quantum-
mechanical distribution averaged over a region $�x containing several oscillations. A physical 
measurement with resolution $�x will yield the classical result if n is so large that C2(x) has 
many oscillations in $�x.

0 ��x ��L

0 L x

�2

Quantum-mechanical
distribution

Classical distribution

1––
L

P = 

TIPLER_06_229-276hr.indd   242 8/22/11   11:57 AM

242 Chapter 6 The Schrödinger Equation

In Figure 6-4 we see that for the lowest energy states the quantum distribution function 
is very different from this. According to Bohr’s correspondence principle, the quantum 
distributions should approach the classical distribution when n is large, that is, at large 
energies. For any state n, the quantum distribution has n peaks. The distribution for
n � 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if 
there are many peaks in a small distance $�x, only the average value will be observed. 
But the average value of sin2kn x over one or more cycles is 1/2. Thus�C2

n�x� � av � 6 2
L

 sin2 knx 7
av

�
2
L

 
1
2
�

1
L

which is the same as the classical distribution.

The Complete Wave Function
The complete wave function, including its time dependence, is found by multiplying 
the space part by

e�iVt � e�i�En�6�t
according to Equation 6-17. As mentioned previously, a wave function corresponding 
to a single energy oscillates with angular frequency Vn � En�6, but the probability 
distribution U #n�x, t� U 2 is independent of time. This is the wave-mechanical justifica-
tion for calling such a state a stationary state or eigenstate, as we have done earlier. It 
is instructive to look at the complete wave function for a particular state n:

#n�x, t� � � 2
L

 sin knx e�iVnt

If we use the identity

sin knx �
�eiknx � e�iknx�

2i

we can write this wave function as

#n�x, t� �
1
2i� 2

L
�ei�knx�Vnt� � e�i�knx�Vnt� �

FIGURE 6-5 Probability distribution for n � 10 for the infinite square well potential. The 
dashed line is the classical probability density P � 1�L, which is equal to the quantum-
mechanical distribution averaged over a region $�x containing several oscillations. A physical 
measurement with resolution $�x will yield the classical result if n is so large that C2(x) has 
many oscillations in $�x.

0 ��x ��L

0 L x

�2

Quantum-mechanical
distribution

Classical distribution

1––
L

P = 

TIPLER_06_229-276hr.indd   242 8/22/11   11:57 AM

242 Chapter 6 The Schrödinger Equation

In Figure 6-4 we see that for the lowest energy states the quantum distribution function 
is very different from this. According to Bohr’s correspondence principle, the quantum 
distributions should approach the classical distribution when n is large, that is, at large 
energies. For any state n, the quantum distribution has n peaks. The distribution for
n � 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if 
there are many peaks in a small distance $�x, only the average value will be observed. 
But the average value of sin2kn x over one or more cycles is 1/2. Thus�C2

n�x� � av � 6 2
L

 sin2 knx 7
av

�
2
L

 
1
2
�

1
L

which is the same as the classical distribution.

The Complete Wave Function
The complete wave function, including its time dependence, is found by multiplying 
the space part by

e�iVt � e�i�En�6�t
according to Equation 6-17. As mentioned previously, a wave function corresponding 
to a single energy oscillates with angular frequency Vn � En�6, but the probability 
distribution U #n�x, t� U 2 is independent of time. This is the wave-mechanical justifica-
tion for calling such a state a stationary state or eigenstate, as we have done earlier. It 
is instructive to look at the complete wave function for a particular state n:

#n�x, t� � � 2
L

 sin knx e�iVnt

If we use the identity

sin knx �
�eiknx � e�iknx�

2i

we can write this wave function as

#n�x, t� �
1
2i� 2

L
�ei�knx�Vnt� � e�i�knx�Vnt� �

FIGURE 6-5 Probability distribution for n � 10 for the infinite square well potential. The 
dashed line is the classical probability density P � 1�L, which is equal to the quantum-
mechanical distribution averaged over a region $�x containing several oscillations. A physical 
measurement with resolution $�x will yield the classical result if n is so large that C2(x) has 
many oscillations in $�x.

0 ��x ��L

0 L x

�2

Quantum-mechanical
distribution

Classical distribution

1––
L

P = 

TIPLER_06_229-276hr.indd   242 8/22/11   11:57 AM



Introduction of Quantum Mechanics  : Dr Prince A Ganai

 6-2 The Infinite Square Well 243

Just as in the case of the standing-wave function for the vibrating string, we can con-
sider this stationary-state wave function to be the superposition of a wave traveling to 
the right (first term in brackets) and a wave of the same frequency and amplitude trav-
eling to the left (second term in brackets).

EXAMPLE 6-2 An Electron in a Wire  An electron moving in a thin metal wire is 
a reasonable approximation of a particle in a one-dimensional infinite well. The poten-
tial inside the wire is constant on average but rises sharply at each end. Suppose the 
electron is in a wire 1.0 cm long. (a) Compute the ground-state energy for the electron. 
(b) If the electron’s energy is equal to the average kinetic energy of the molecules in a 
gas at T � 300 K, about 0.03 eV, what is the electron’s quantum number n?

SOLUTION
 1. For question (a), the ground-state energy is given by Equation 6-25:

 E1 �
P262

2mL2

 �
P2�1.055 � 10�34 J � s�2�2� �9.11 � 10�31 kg� �10�2 m�2

 � 6.03 � 10�34 J � 3.80 � 10�15 eV

 2. For question (b), the electron’s quantum number is given by Equation 6-24:

En � n2E1

 3. Solving Equation 6-24 for n and substituting En � 0.03 eV and E1 from above 
yields

n2 �
En

E1
  or

 n � �En

E1
� � 0.03 eV

3.80 � 10�15 eV

 � 2.81 � 106

Remarks: The value of E1 computed above is not only far below the limit of mea-
surability, but also smaller than the uncertainty in the energy of an electron con-
fined into 1 cm.

EXAMPLE 6-3 Calculating Probabilities  Suppose that the electron in Exam-
ple 6-2 could be “seen” while in its ground state. (a) What would be the prob-
ability of finding it somewhere in the region 0 � x � L�4? (b) What would be 
the probability of finding it in a very narrow region $�x � 0.01L wide centered at 
x � 5L�8?

SOLUTION
(a) The wave function for the n � 1 level, the ground state, is given by Equation 6-32 as

C1�x� � � 2
L

 sin 
Px
L
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The probability that the electron would be found in the region specified is

)
L�4

0

P1�x�dx � )
L�4

0

2
L

 sin2 4Px
L
5  dx

Letting u � Px�L, hence dx � L du�P, and noting the appropriate change in the 
limits on the integral, we have that

)
P�4

0

2
P

 sin2 u du �
2
P
4 u

2
�  

sin 2u
4
5 3 P�4

0
�

2
P
4P

8
�  

1
4
5 � 0.091

Thus, if one looked for the particle in a large number of identical searches, the elec-
tron would be found in the region 0 � x � 0.25 cm about 9 percent of the time. This 
probability is illustrated by the shaded area on the left side in Figure 6-6.

(b) Since the region $�x � 0.01L is very small compared with L, we do not need to 
integrate but can calculate the approximate probability as follows:

P � P�x�$x �
2
L

 sin2 
Px
L

 $x

Substituting $�x � 0.01L and x � 5L�8, we obtain

 P �
2
L

 sin2
P�5L�8�

L
 �0.01L�

 �
2
L
�0.854� �0.01L� � 0.017

This means that the probability of finding the electron within 0.01L around 
x � 5L�8 is about 1.7 percent. This is illustrated in Figure 6-6, where the area of 
the shaded narrow band at x � 5L�8 is 1.7 percent of the total area under the curve.

EXAMPLE 6-4 An Electron in an Atomic-Size Box  (a) Find the energy in the 
ground state of an electron confined to a one-dimensional box of length L � 0.1 nm. 
(This box is roughly the size of an atom.) (b) Make an energy-level diagram and 
find the wavelengths of the photons emitted for all transitions beginning at state 
n � 3 or less and ending at a lower energy state.

FIGURE 6-6  The probability density C2(x) versus x for a particle in the ground state of
an infinite square well potential. The probability of finding the particle in the region 
0 � x � L�4 is represented by the larger shaded area. The narrow shaded band illustrates 
the probability of finding the particle within $�x � 0.01L around the point where x � 5L�8.
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