Solid State Physics- SSP

Free Electron Theory of Metals (T-Sheet 2) M.A.Shah

- 1. Compute the average kinetic energy of a gas molecule at 27°C. Express in electron volt. If the gas is hydrogen, what is the order of magnitude of the velocity of molecules at 27°C?
- 2. Silver Ag is having density of $10.5 \times 10^3 \text{ kg/m}^3$ and the atomic weight is 107.9. Assuming that each silver provides one conduction electron, calculate the density of electrons. The conductivity of silver at 20°C is $6.8 \times 10^7 \text{ ohm}^{-1}\text{m}^{-1}$. Calculate the mobility of electrons.
- 3. The resistivity of Al is 2.62x10⁻⁸ohm.m at room temp. Calculate (i) drift velocity of the conduction electrons in a field of 50Vm⁻¹ (ii) their mobility (iii) their relaxation time and mean free path on the basis of classical free theory.
- 4. The relaxation time of conduction electron in copper is 2.5×10^{-14} sec. Find the thermal conductivity of copper at 0°C. assume density of electron to be 8.5×10^{28} /m³.
- 5. A stream of electrons, each of energy E = 3 eV is incident on a potential barrier of height Vo= 4eV. The width of the barrier is 2nm. Cal. the percentage transmission of the beam through this barrier.
- 6. Find the lowest energy of an electron confined in a box of each side 0.1nm. Find the percentage at which the average energy of molecules of a perfect gas would be equal to the lowest energy of electron.
- 7. Calculate the number of energy states available for the electrons in a cubical box of side 1 cm lying below an energy of one electron volt.
- 8. The Fermi energy of sodium is 3eV. Calculate the difference in energy between the neighboring levels at the highest energy state in a cubical box of side 1 cm. Given $n_x = n_y = n_z$
- 9. Cal. the mean free path of potassium, if its Fermi energy is 2.1eV and the electrical conductivity is 1.5 x 107 ohm-1m-1.
- 10. Calculate the number of states lying in an energy interval of 0.02 eV above Fermi level for sodium crystal of unit volume.
- 11. Estimate the relative contribution of electrons and the lattice to specific heat of sodium at 20K. The fermi temperature of sodium is 3.8×10^4 K and its Debye temp. is 150K.
- 12. The resistivity's of copper and nickel at room temperature are 1.65×10^{-8} and 14×10^{-8} ohm. m respectively. If the wave mechanical treatment of Widemann-Franz law applies to these materials and find the electronic contribution to the thermal conductivities of these materials.
- 13. By how many orders of magnitude is the mean free path reduced in a certain metal when temperature increases from 0°C to 340°C. Take $\alpha = 5 \times 10^{-3}$.
- 14. Show that for a simple square lattice, the kinetic energy of free electrons at a corner of the first zone is higher than that of an electron at midpoint of a side face of zone by a factor of 2.
- 15. The electronic specific heat of zinc is 1.5×10^{-4} T cal mol⁻¹K⁻¹. Find the Fermi energy of zinc. Zinc is a divalent metal. Cal the density of of states of $1m^3$ of copper at Fermi level. Take 1eV interval, E_F = 7eV, m=m*

Shahji@nitsri.ac.in For - SSP